Что называется электрическим сопротивлением участка цепи

Что называется электрическим сопротивлением участка цепи

«Физика — 10 класс»

Что заставляет заряды двигаться вдоль проводника?
Как электрическое поле действует на заряды?

Вольт-амперная характеристика.

В предыдущем параграфе говорилось, что для существования тока в проводнике необходимо создать разность потенциалов на его концах. Сила тока в проводнике определяется этой разностью потенциалов. Чем больше разность потенциалов, тем больше напряжённость электрического поля в проводнике и, следовательно, тем большую скорость направленного движения приобретают заряженные частицы. Это означает увеличение силы тока.

Для каждого проводника — твёрдого, жидкого и газообразного — существует определённая зависимость силы тока от приложенной разности потенциалов на концах проводника.

Зависимость силы тока в проводнике от напряжения, подаваемого на него, называют вольт-амперной характеристикой проводника.

Её находят, измеряя силу тока в проводнике при различных значениях напряжения. Знание вольт-амперной характеристики играет большую роль при изучении электрического тока.

Закон Ома.

Наиболее простой вид имеет вольт- амперная характеристика металлических проводников и растворов электролитов. Впервые (для металлов) её установил немецкий учёный Георг Ом, поэтому зависимость силы тока от напряжения носит название закона Ома.

На участке цепи, изображённой на рисунке 15.3, ток направлен от точки 1 к точке 2. Разность потенциалов (напряжение) на концах проводника равна U = φ1 — φ2. Так как ток направлен слева направо, то напряжённость электрического поля направлена в ту же сторону и φ1 > φ2.

Измеряя силу тока амперметром, а напряжение вольтметром, можно убедиться в том, что сила тока прямо пропорциональна напряжению.

Закон Ома для участка цепи:

Сила тока на участке цепи прямо пропорциональна приложенному к нему напряжению U и обратно пропорциональна сопротивлению этого участка R.

Применение обычных приборов для измерения напряжения — вольтметров — основано на законе Ома. Принцип устройства вольтметра такой же, как и у амперметра. Угол поворота стрелки прибора пропорционален силе тока.

Сила тока, проходящего по вольтметру, определяется напряжением между точками цепи, к которой он подключён. Поэтому, зная сопротивление вольтметра, можно по силе тока определить напряжение. На практике прибор градуируют так, чтобы он сразу показывал напряжение в вольтах.

Сопротивление.

Основная электрическая характеристика проводника — сопротивление. От этой величины зависит сила тока в проводнике при заданном напряжении.

Свойство проводника ограничивать силу тока в цепи, т. е. противодействовать электрическому току, называют электрическим сопротивлением проводника.

С помощью закона Ома (15.3) можно определить сопротивление проводника:

Для этого нужно измерить напряжение на концах проводника и силу тока в нём.

На рисунке 15.4 приведены графики вольт-амперных характеристик двух проводников. Очевидно, что сопротивление проводника, которому соответствует график 2, больше, чем сопротивление проводника, которому соответствует график 1.

Сопротивление проводника не зависит от напряжения и силы тока.

Сопротивление зависит от материала проводника и его геометрических размеров.

Сопротивление проводника длиной l с постоянной площадью поперечного сечения S равно:

где ρ — величина, зависящая от рода вещества и его состояния (от температуры в первую очередь).

Величину ρ называют удельным сопротивлением проводника.

Удельное сопротивление материала численно равно сопротивлению проводника из этого материала длиной 1 м и площадью поперечного сечения 1 м 2 .

Единицу сопротивления проводника устанавливают на основе закона Ома и называют её омом.

Проводник имеет сопротивление 1 Ом, если при разности потенциалов 1 В сила тока в нём 1 А.

Единицей удельного сопротивления является 1 Ом • м. Удельное сопротивление металлов мало. А вот диэлектрики обладают очень большим удельным сопротивлением. Например, удельное сопротивление серебра 1,59 • 10 -8 Ом • м, а стекла порядка 10 10 Ом • м. В справочных таблицах приводятся значения удельного сопротивления некоторых веществ.

Значение закона Ома.

Из закона Ома следует, что при заданном напряжении сила тока на участке цепи тем больше, чем меньше сопротивление этого участка. Если по какой-то причине (нарушение изоляции близко расположенных проводов, неосторожные действия при работе с электропроводкой и пр.) сопротивление между двумя точками, находящимися под напряжением, оказывается очень малым, то сила тока резко возрастает (возникает короткое замыкание), что может привести к выходу из строя электроприборов и даже возникновению пожара.

Именно из-за закона Ома нельзя говорить, что чем выше напряжение, тем оно опаснее для человека. Сопротивление человеческого тела может сильно изменяться в зависимости от условий (влажности, температуры окружающей среды, внутреннего состояния человека), поэтому даже напряжение 10—20 В может оказаться опасным для здоровья и жизни человека. Следовательно, всегда необходимо учитывать не только напряжение, но и силу электрического тока. При работе в физической лаборатории нужно строго соблюдать правила техники безопасности!

Читайте также:  Свекла выращивание посадка уход

Закон Ома — основа расчётов электрических цепей в электротехнике.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Законы постоянного тока — Физика, учебник для 10 класса — Класс!ная физика

Закон Ома связывает сопротивление цепи с напряжением и током. Применение правил цепи этого закона дает возможность определить показатели для проектирования электроцепей. Электричество течет через материал, переносимый электронами, крошечными заряженными частицами внутри атомов. В металлах атомы заключены в твердую кристаллическую структуру. Хотя большинство электронов внутри этих атомов зафиксированы, некоторые могут проникать сквозь нее. Металлы оказывающие относительно небольшое сопротивление походящим через него электронам являются хорошими проводниками.

Формулировка закона

Закон относится к базовому положению в электротехнике.

Формула Ома для участка цепи:

  • V — напряжение между 2-мя точками, В;
  • R — сопротивление, свойство материала, используемого для описания противодействия потоку тока, Ом;
  • I — сила тока на участке цепи — поток электронов или электронно-дефицитных атомов, определяемая в А.

Преобразование пропорциональности в уравнение, приводит к постоянной «R» — сопротивлению.

В 1-м случае, закон Ома для участка цепи выражается формулой: I = V/R, понятно, что электроток рассчитывают делением V на R. 2-й вариант утверждает, что V рассчитывают, если известны I и R в цепи. Из уравнения очевидно, что если растут I или R, в то время как другой не изменяется, напряжение также должно возрасти.

Третий вариант подтверждает, что можно рассчитать R в цепи, перед тем, как найти сопротивление участка цепи по формуле нужно знать два других показателя. Если ток поддерживается постоянным, то рост напряжения приведет к увеличению сопротивления.

Для замкнутой цепи

Замкнутая цепь означает закрытое электросоединение, по которому циркулирует ток. Когда существует ряд проводов, соединяющих друг с другом и замыкающих цепь так, что I проходит от одного конца круга к другому, это будет замкнутая цепь.

ЭДС (Е) — обозначается и измеряется в вольтах и имеет отношение к напряжению, генерируемому батареей или магнитной силой по закону Фарадея, утверждающего, что изменяющееся во времени магнитное поле будет индуцировать электроток.

Тогда: Е = IR + Ir

Где: r — сопротивление источника тока.

Это выражение известно, как закон Ома цепей с замкнутым контуром.

Для неоднородного участка цепи

Возможно применение омовских расчетов для неоднородных цепей:

Если Еcт и Екул совпадут по направлению — ЭДС и напряжение будут иметь одинаковый знак.
Фактически в замкнутом участке сети V=0, поскольку кулоновское поле неактивно.

В связи с чем: I = E /(R+r), где: r — показатель относится источнику тока.

В дифференциальной форме

Формулу очень часто представляют в дифференциальном виде, поскольку проводник обычно неоднородный и потребуется разбить его на минимально возможные участки. Ток, проходящий через него, связан с величиной и направлением, поэтому считается скалярной величиной. Всякий раз, когда нужно найти результирующий ток через провод, берут алгебраическую сумму всех отдельных токов. Поскольку это правило действует только для скалярных величин, ток принимают также в качестве скалярной величины. Известно, через сечение проходит ток dI = jdS. Напряженье, на нем равняется Еdl, тогда для провода с постоянным сечением и равной протяженности будет верно соотношение:

Поэтому, выражение тока в векторном виде будет: j = E.

Важно! В случае металлических проводников с ростом температуры проводимость падает, а для полупроводников — растет. Омовский закон не демонстрирует строгую пропорциональность. Сопротивление большой группы металлов и сплавов исчезает при температуре, близкой к абсолютному нулю, а процесс называется сверхпроводимостью.

Для переменного тока

Нужно понимать, что закон не применим напрямую к переменным цепям, например, с катушками индуктивности, конденсаторами или линиям передач. Закон может использоваться только для чисто резистивных цепей переменного тока без каких-либо изменений. В цепи RLC противодействие току является импедансом Z, который образует комбинацию двух ортогональных частей сопротивления.

В этом случае Vm связано с Im с помощью константы пропорциональности Z (импеданса) и константы пропорциональности R. Для чисто резистивных линий, где (Z = R).

Vm = ImZ и Vm = ImR

Z — это общее сопротивление участка к переменному току, состоящее из реальной части — сопротивления и мнимой — реактивности.

Формула ее определяется теоремой Пифагора, поскольку угол Ф зависит от реактивной составляющей.

В интегральной форме

Данную форму можно получить из дифференциального выражения с использованием
теоремы Гаусса (дивергенции) к закону сохранения заряда. Для того чтобы вывести интегральный закон Ома для конкретной неоднородного проводника, показывают направление вектора плотности I, сам I и потенциалы на входе/ выходе.

Участок с положительной ЭДС (Е) источник, а с отрицательной — потребитель. Поэтому в записи закона Ома, его нужно писать в арифметическом выражении:

Читайте также:  Пример технического задания на разработку программного обеспечения

Единицы измерения

При выполнении расчетов по закону Ома используют совместимые единицы в СИ. Если отличны от «Ом»- для сопротивления, «Ампер» — для тока и «Вольт» — для напряжения, то перед выполнением расчетов выполняют преобразование единиц измерения. Например, килоомы должны быть переведены в омы, а микроамперы — в амперы.

Сопротивление — это свойство любого объекта или материала сопротивляться, или противостоять потоку электротока. Единицей его принят «Ом». Аббревиатура для электросопротивления — R, а символ — греческая буква омега. Для некоторых электрорасчетов используется его обратная величина проводимость — 1/R, символ, которой имеет обратное значение омеги.

Вольт — это энергия в 1 Дж, потребляемая, когда в цепи протекает электрозаряд в 1 кулон: 1 В = 1 Дж / 1С.
Ампер измеряет количество электрического заряда, который течет в электроцепи за 1 секунду: 1А = 1С / 1сек.

Взаимосвязь между величинами легко получить по треугольнику Ома. Это простой способ запомнить отношения напряжения, тока и сопротивления. Он служит уловкой, чтобы найти любую из трех величин, учитывая, что две другие известны.

При этом величины U, I и R расположены в виде треугольника, как показано на рисунке выше. Напряжение (U) находится наверху, а две другие величины, то есть ток (I) и сопротивление ®, расположены ниже рядом друг с другом горизонтально. Разделение между верхней и нижней частями указывает на деление, а линия, разделяющая левую и правую части на умножение.

I — сила тока

Единица тока — количества заряда ©, которое перемещается за единицу времени. Ампер (A) является общей единицей тока, равной 1 С/сек, а символом его — «I». Ток — внутреннее свойство, поскольку зависит от других аспектов, таких как размер системы. Чтобы точно сравнить величину тока для разных систем, ток нормализуется по площади или массе системы. Это описано следующими выражениями:

J = I / S;
J = I / m

  • J — плотность тока в мм2 или гр;
  • I — сила тока (A);
  • S — площадь сечения провода мм2;
  • m — масса (гр).

Обратите внимание! Часто «J» используется как ток вместо «I». Для того чтобы предотвратить путаницу с мнимыми числами, нужно уточнять символы, так как они могут варьироваться в зависимости от конкретного случая.

U — напряжение

Напряжение является еще одной важной единицей закона Ома, которая устанавливает объем работы, необходимой для перемещения заряда. Напряжение «V» измеряет электрический потенциал «Вольт», которым объект обладает по отношению к заряду. Подавая напряжение, выполняется работа, которая обеспечивает движение заряда. Количество заряда, известный как точечный заряд, его определение может быть выполнено следующим образом:

V = kq / (r • r), где:

  • V — электрический потенциал (V);
  • k — кулоновская постоянная = 8,99 × 10 9Н • м 2 • С −2;
  • q — заряд точки©;
  • r — расстояние от точечного заряда (м).

R — электрическое сопротивление

Сопротивление — величина обратная напряжению, ее можно сравнить с эффектом перемещения тела против движения в проточной воде. Единицей R принят «Ом», который обозначается заглавной греческой буквой «Омега».

Обратная величина сопротивления (1 /R) известна как проводимость, которая измеряет способность объекта проводить заряд, выраженную в единицах Siemens.

Используемая геометрически независимая величина называется удельным сопротивлением и обычно обозначается греческим символом r.

Дополнительная информация. Закон Ома помогает установить три важные показателя работы электросети, что упрощает расчет мощности. Он не применим к односторонним сетям имеющих такие элементы, как диод, транзистор и аналогичные им. И также он не применим к нелинейным элементам, примерами которых являются тиристоры, поскольку значение сопротивления этих элементов изменяется при разных данных напряжения и тока.

На более высоких частотах распределенное поведение становится доминирующим. То же самое происходит с очень длинными линиями электропередач. Даже на такой низкой частоте, как 60 Гц, очень длинная линия электропередачи, например, 30 км имеет распределенную природу. Основная причина заключается в том, что действующие электрические сигналы, распространяющиеся в цепях, представляют собой электромагнитные волны, а не вольт и ампер, которые инфицируются электромагнитной волной. Проводники просто действуют как направляющие для волн. Так, например, коаксиальный кабель будет показывать Z = 75 Ом, даже если его сопротивление постоянному току незначительно.

Закон Ома — это фундаментальный закон электротехники. Он имеет большое количество практических применений во всех электроцепях и электронных компонентах.

Наиболее распространённые примеры применения закона Ома:

  1. Мощность, подаваемая на электрический нагреватель. При условии сопротивления катушки нагревателя и приложенного напряжения, можно рассчитать мощность, подаваемую на этот нагреватель.
  2. Выбор предохранителей. Они являются компонентами защиты, которые соединяются последовательно с электронными устройствами. Предохранители/ CB рассчитаны в амперах. Текущий рейтинг предохранителя рассчитывается по закону Ома.
  3. Дизайн электронных устройств. Для электронных устройств, таких как ноутбук и мобильные телефоны, требуется источник питания постоянного тока сопределенным номинальным током. Типичные аккумуляторы для мобильных телефонов требуют 0,7-1 А. Резистор используется для контроля скорости тока, протекающего через эти компоненты. Закон Ома используется для расчета номинального тока в типовой схеме.
Читайте также:  Какие электроустановки и электрические приборы подлежат отключению

В свое время выводы Ома стали катализатором новых исследований в области электричества и сегодня они не утратили свою значимость, поскольку на них базируется современная электротехника. В 1841 году Ом был удостоен высшей награды Королевского общества, медали Копли, а термин «Ом» был признан единицей сопротивления еще в 1872 году.

Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. Если увеличить в несколько раз напряжение, действующее в электрической цепи, то ток в этой цепи увеличится во столько же раз.

Единица измерения – Ом.

Что называется удельным сопротивлением проводника, в каких единицах измеряется?

Удельное электрическое сопротивление, или просто удельное сопротивление вещества характеризует его способность проводить электрический ток.

Физический смысл удельного сопротивления в СИ: сопротивление однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 м².

Единица измерения удельного сопротивления в СИ — Ом·м; также измеряется в Ом·см и Ом·мм²/м.

9. Сформулируйте правила Кирхгофа

Первое правило

Первое правило Кирхгофа гласит, что алгебраическая сумма токов ветвей, сходящихся в каждом узле любой цепи, равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла — отрицательным: Алгебраическая сумма токов, направленных к узлу, равна сумме направленных от узла.

Сколько тока втекает в узел, столько из него и вытекает.
i2 + i3 = i1 + i4

Второе правило

Второе правило Кирхгофа (правило напряжений Кирхгофа) гласит, что алгебраическая сумма напряжений на резистивных элементах замкнутого контура равна алгебраической сумме ЭДС, входящих в этот контур. Если в контуре нет источников ЭДС (идеализированных генераторов напряжения), то суммарное падение напряжений равно нулю:

для постоянных напряжений

<displaystyle sum _^E_=sum _^U_=sum _^R_I_;>

для переменных напряжений <displaystyle sum _^e_=sum _^u_=sum _^R_i_+sum _^u_+sum _^u_.>

Что называется узлом электрической цепи, ветвью, контуром цепи?

Графическое изображение электрической цепи, содержащее условные обозначения ее элементов, называется схемой электри­ческой цепи.

Участок, вдоль которого ток один и тот же, называется ветвью электрической цепи.

Место соединения ветвей называется узлом электрической цепи.

Любой замкнутый путь, проходящий по нескольким ветвям, называется контуром электрической цепи. Контур не включающий в себя остальные называется независимым контуром электрической цепи.

Как сопротивление проводника зависит от температуры?

Если при температуре, равной 0°С, сопротивление проводника равно R0, а при температуре t оно равно R, то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры t:

(1)

Коэффициент α называется температурным коэффициентом сопротивления. Он характеризует зависимость сопротивления вещества от температуры.

Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при повышении температура на 1 К.

Для всех металлов α > 0 и незначительно меняется с изменением температуры. У растворов электролитов сопротивление с ростом температуры не уменьшается, а увеличивается. Для них α

При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление проводника меняется в основном за счет изменения его удельного сопротивления. Можно найти зависимость этого удельного сопротивления от температуры, если в формулу (1) подставить значения

и :

Так как α мало меняется при изменении температуры, то можно считать, что удельное сопротивление проводника линейно зависит от температуры.

С приближением температуры к абсолютному нулю удельное сопротивление монокристаллов становится очень малым. Этот факт свидетельствует о том, что в идеальной кристаллической решетке металла электроны перемещаются под действием электрического поля, не взаимодействуя с ионами решетки. Электроны взаимодействуют лишь с ионами, не находящимися в узлах кристаллической решетки.

При повышении температуры возрастает число дефектов кристаллической решетки из-за тепловых колебаний ионов, – и это приводит к возрастанию удельного сопротивления кристалла.

12. Чему равно суммарное сопротивление последовательно включенных проводников? нарисовать рисунок

При последовательном соединении проводников (рис. 1.9.1) сила тока во всех проводниках одинакова:

I1 = I2 = I.
Рисунок 1.9.1. Последовательное соединение проводников

По закону Ома, напряжения U1 и U2 на проводниках равны

U1 = IR1, U2 = IR2.

Общее напряжение U на обоих проводниках равно сумме напряжений U1 и U2:

U = U1 + U2 = I(R1 + R2) = IR,

где R – электрическое сопротивление всей цепи. Отсюда следует:

Дата добавления: 2019-09-13 ; просмотров: 126 ; ЗАКАЗАТЬ РАБОТУ

Ссылка на основную публикацию
Adblock detector