Фильтры нижних и верхних частот

Фильтры нижних и верхних частот

Фильтр нижних частот (ФНЧ) — электрическая цепь, эффективно пропускающая частотный спектр сигнала ниже определённой частоты, называемой частотой среза, и подавляющая сигнал выше этой частоты.

Фильтр высших частот (ФВЧ) — электрическая цепь, эффективно пропускающая частотный спектр сигнала выше частоты среза, и подавляющая сигнал ниже этой частоты.

Рассмотрим в качестве фильтра простейшую цепь RC, принцип работы которой основан на зависимости реактивного сопротивления конденсатора от частоты сигнала.

Если к источнику переменного синусоидального напряжения U частотой f подключить последовательно резистор сопротивлением R и конденсатор ёмкостью C, падение напряжения на каждом из элементов можно вычислить исходя из коэффициента деления с импедансом Z.

Импеданс — комплексное (полное) сопротивление цепи для гармонического сигнала.
Z² = R² + X² ; Z = √(R² + X²) , где Х — реактивное сопротивление.

Тогда на выводах резистора напряжение UR будет составлять:

XC – реактивное сопротивление конденсатора, равное 1/2πfC

При равенстве R = XC на частоте f, выражение упростится сокращением R и примет вид:

Следовательно, на частоте f равенство активного и реактивного сопротивлений цепочки RC обеспечит одинаковую амплитуду переменного синусоидального напряжения на каждом из элементов в √2 раз меньше входного напряжения, что составляет приблизительно 0.7 от его значения.
В этом случае частота f определится исходя из сопротивления R и ёмкости С выражением:

Повышение частоты уменьшит реактивное сопротивление конденсатора и падение напряжение на нём, тогда напряжение на выводах резистора возрастёт. Соответственно, понижение частоты увеличит напряжение на конденсаторе и уменьшит на резисторе.

Зависимость амплитуды переменного напряжения от его частоты называют амплитудно-частотной характеристикой (АЧХ).

Если рассмотреть АЧХ напряжения на выводах конденсатора или резистора в RC цепи, можно наблюдать на частоте f = 1/(2π τ) спад уровня до значения 0.7, что соответствует -3db по логарифмической шкале.

Следовательно, цепь RC может быть использована как фильтр нижних частот (ФНЧ) — красная линия на рисунке, или фильтр высших частот (ФВЧ) — синяя линия.

Ниже представлены схемы включения RC-цепочек в качестве фильтров соответственно ФНЧ и ФВЧ.

Частоту f = 1/(2π τ) называют граничной частотой fгр или частотой среза fср фильтра.

Частоту среза фильтра можно посчитать с помощью онлайн калькулятора

Достаточно вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Похожие страницы с расчётами:

Замечания и предложения принимаются и приветствуются!

ЭКСПЕРИМЕНТ 23 Фильтры нижних и верхних частот

После проведения данного эксперимента Вы сможете рассчитывать частоту отсечки резистивно-емкостных фильтров нижних и верхних частот, а также познакомитесь с влиянием изменений частоты на выходное напряжение.

один дисковый конденсатор 0.01 мкФ, один резистор 15 кОм.

Фильтр — это частотночувствительная схема, выходная амплитуда которой варьирует в зависимости от частоты на входе.

Фильтр нижних частот — это такой фильтр, который пропускает частоты меньше некоторой определенной частоты отсечки (fco), но подавляет те частоты, которые больше частоты отсечки. Фильтр верхних частот — это такой фильтр, который пропускает частоты, которые больше некоторой определенной частоты отсечки, но подавляет

те частоты, которые меньше частоты отсечки. На рисунке 23-1 представлены выходные характеристики фильтра нижних частот и фильтра верхних частит.


Фильтры нижних и верхних частот могут быть реализованы различными способами. Простейший фильтр — это резистор и конденсатор, соединенные между собой, как показано на рисунке 23-2.


Ключевой характеристикой фильтра нижних частот или фильтра верхних частот является его частота отсечки (fco). Как Вы можете видеть на основании рисунка 23-1, частота отсечки — это такая частота, где выходное напряжение фильтра падает до 70,7% от его максимально возможного выходного напряжения. В фильтре нижних частот выходное напряжение остается относительно постоянным по мере того, как возрастает входная частота. С приближением к частоте отсечки выходное напряжение начинает уменьшаться. Когда достигается частота отсечки,’выходное напряжение понижается до 70,7% от его максимально возможного значения. Выходное напряжение продолжает убывать по мере возрастания частоты.

В фильтре верхних частот выходное напряжение имеет максимальное значение, когда входная частота с запасом превышает частоту отсечки. Когда входная частота постепенно уменьшается, выходное напряжение понижается по мере приближения к частоте отсечки. Когда достигается частота отсечки, выходное напряжение понижается до 70,7% рт его максимально возможного-значения. Выходное напряжение продолжает убывать по мере дальнейшего уменьшения входной частоты.

В фильтре нижних частот сигналы с частотой

ниже fco пропускаются без ослабления или лишь с незначительным ослаблением; сигналы с,частотой выше fco быстро ослабляются. В фильтре верхних частот сигналы с частотой ниже fco значительно подавляются, тогда как сигналы с частотой

выше fco, пропускаются с минимальным противодействием. Снова обратитесь к рисунку 23-1.

Частота отсечки простого резистивно-емкостного фильтра, подобного показанному-на рисунке 23-2, вычисляется при помощи следующей формулы:

Пример: Если R = 3,3 кОм и С = 0,15 мкф, частота отсечки равна:

fco = 1/6,28(3300)(0,15 х 10^-6)

В данном эксперименте Вы познакомитесь с действием резистивно-емкостных фильтров верхних и нижних частот. Поскольку в настоящий момент у Вас нет средств для точного измерения частоты, может быть получено лишь общее представление о работе фильтра. Тем не менее, Вы сможете четко показать, что указанные фильтры действительно пропускают некоторые частоты с минимальным ослаблением, тогда как другие частоты ими сильно подавляются.


1. Вычислите частоту отсечки фильтра нижних частот, показанного на рисунке 23-3.

2. Соберите схему, показанную на рисунке 23-3,

Читайте также:  Как убрать следы от клея момент

при помощи Вашей макетной панели. Подключите резистивно-емкостной фильтр ко входу генератора функций.

3. Установите регулятор частоты генератора функций на частоту 10 Гц. После этого поворачивайте регулятор амплитуды, чтобы подать напряжение с размахом 4 В к схеме.

4. Далее измерьте выходное напряжение фильтра на конденсаторе. Запишите полученное значение.

Выходное напряжение фильтра = ___ В

5. Подключите осциллограф к конденсатору фильтра. При наблюдении за выходным напряжением поворачивайте ручку регулятора частоты, чтобы увеличить частоту до 1000 Гц. Увеличивается или уменьшается выходное напряжение?

6. Основываясь на входном значении в шаге 3, вычислите значение выходного напряжения при частоте отсечки.

Напряжение на частоте

отсечки = ________ В

7. Подавайте при помощи генератора функций синусоидальный сигнал в схему на каждой из частот, указанных в приведенной ниже таблице Установите размах напряжения на входе схемы равным 4 В. В процессе изменения частот

снова проконтролируйте входное напряжение, чтобы убедиться, что оно все еще имеет размах 4 В. Измеряйте выходное напряжение фильтра на каждой частоте и записывайте Ваши результаты в следующую таблицу.

В своей жизни вы не раз слышали слово “фильтр”. Фильтр для воды, воздушный фильтр, масляной фильтр, “фильтруй базар” в конце концов). В воздушном, водяном, масляном и других видах фильтров происходит очистка от посторонних частиц и примесей. Но что же фильтрует электрический фильтр? Ответ простой: частоту.

Что такое электрический фильтр

Электрический фильтр – это устройство для выделения желательных компонентов спектра (частот) электрического сигнала и/или для подавления нежелательных. Для остальных частот, которые не входят в полосу пропускания, фильтр создает большое затухание, вплоть до полного их исчезновения.

Характеристика идеального фильтра должна вырезать строго определенную полосу частота и “давить” другие частоты до полного их затухания. Ниже пример идеального фильтра, который пропускает частоты до какого-то определенного значения частоты среза.

На практике такой фильтр реализовать нереально. При проектировании фильтров стараются как можно ближе приблизиться к идеальной характеристике. Чем ближе характеристика АЧХ к идеальному фильтру, тем лучше он будет исполнять свою функцию фильтрации сигналов.

Фильтры, которые собираются только на пассивных радиоэлементах, таких как катушка индуктивности, конденсатор, резистор, называют пассивными фильтрами. Фильтры, которые в своем составе имеют один или несколько активных радиоэлементов, типа транзистора или ОУ, называют активными фильтрами.

В нашей статье мы будем рассматривать пассивные фильтры и начнем с самых простых фильтров, состоящих из одного радиоэлемента.

Одноэлементные фильтры

Как вы поняли из названия, одноэлементные фильтры состоят из одного радиоэлемента. Это может быть либо конденсатор, либо катушка индуктивности. Сами по себе катушка и конденсатор не являются фильтрами – это ведь по сути просто радиоэлементы. А вот вместе с выходным сопротивлением генератора и с сопротивлением нагрузки их уже можно рассматривать как фильтры. Здесь все просто. Реактивное сопротивление конденсатора и катушки зависят от частоты. Подробнее про реактивное сопротивление вы можете прочитать в этой статье.

В основном одноэлементные фильтры применяются в аудиотехнике. Для фильтрации используется либо катушка, либо конденсатор, в зависимости от того, какие частоты надо выделить. Для ВЧ-динамика (пищалки), мы последовательно с динамиком соединяем конденсатор, который будет пропускать через себя ВЧ-сигнал почти без потерь, а низкие частоты будет глушить.

Для сабвуферного динамика нам нужно выделить низкие частоты (НЧ), поэтому последовательно с сабвуфером соединяем катушку индуктивности.

Номиналы одиночных радиоэлементов можно, конечно, рассчитать, но в основном подбирают на слух.

Для тех, кто не желает заморачиваться, трудолюбивые китайцы создают готовые фильтры для пищалок и сабвуфера. Вот один из примеров:

На плате мы видим 3 клеммника: входной клеммник (INPUT), выходной под басы (BASS) и клеммник под пищалку (TREBLE).

Г-образные фильтры

Г-образные фильтры состоят из двух радиоэлементов, один или два из которых имеют нелинейную АЧХ.

RC-фильтры

Думаю, начнем с самого известного нам фильтра, состоящего из резистора и конденсатора. Он имеет две модификации:

С первого взгляда можно подумать, что это два одинаковых фильтра, но это не так. В этом легко убедиться, если построить АЧХ для каждого фильтра.

В этом деле нам поможет Proteus. Итак, АЧХ для этой цепи

будет выглядеть вот так:

Как мы видим, АЧХ такого фильтра беспрепятственно пропускает низкие частоты, а с ростом частоты ослабляет высокие частоты. Поэтому, такой фильтр называют фильтром низких частот (ФНЧ).

А вот для этой цепи

АЧХ будет выглядеть таким образом

Здесь как раз все наоборот. Такой фильтр ослабляет низкие частоты и пропускает высокие частоты, поэтому такой фильтр называется фильтром высокой частоты (ФВЧ).

Наклон характеристики АЧХ

Наклон АЧХ в обоих случаях равняется 6 дБ/октаву после точки, соответствующей значению коэффициента передачи в -3дБ, то есть частоты среза. Что означает запись 6 дБ/октаву? До или после частоты среза, наклон АЧХ принимает вид почти прямой линии при условии, что коэффициент передачи измеряем в дБ. Октава – это соотношение частот два к одному. В нашем примере наклон АЧХ в 6 дБ/октаву говорит о том, что при увеличении частоты в два раза, у нас прямая АЧХ растет (или падает) на 6 дБ.

Давайте рассмотрим этот пример

Возьмем частоту 1 КГц. На частоте от 1 КГц до 2 КГц падение АЧХ составит 6 дБ. На промежутке от 2 КГц и до 4 КГц АЧХ снова падает на 6 дБ, на промежутке от 4 КГц и до 8 КГц снова падает на 6 дБ, на частоте от 8 КГц и до 16 КГц затухание АЧХ снова будет 6 дБ и тд. , следовательно, наклон АЧХ составляет 6 дБ/октаву. Есть также такое понятие, как дБ/декада. Оно используется реже и обозначает разницу между частотами в 10 раз. Как найти дБ/декаду можно прочитать в этой статье.

Читайте также:  Гаражный навес для автомобиля

Чем больше крутизна наклона прямой АЧХ, тем лучше избирательные свойства фильтра:

Фильтр, с характеристикой наклона в 24 дБ/октаву явно будет лучше, чем в 6 дБ/октаву, так как становится более приближенным к идеальному.

RL-фильтры

Почему бы не заменить конденсатор катушкой индуктивности? Получаем снова два типа фильтров:

Для этого фильтра

АЧХ принимает такой вид:

Получили все тот же самый ФНЧ

а для такой цепи

АЧХ примет такой вид

Тот же самый фильтр ФВЧ

RC и RL фильтры называют фильтрами первого порядка и они обеспечивают наклон характеристики АЧХ в 6 дБ/октаву после частоты среза.

LC-фильтры

А что если заменить резистор конденсатором? Итого мы имеем в схеме два радиоэлемента, реактивное сопротивление которых зависит от частоты. Здесь получаются также два варианта:

Давайте рассмотрим АЧХ этого фильтра

Как вы могли заметить, его АЧХ в области низких частот получилась наиболее плоской и заканчивается шипом. Откуда вообще он взялся? Мало того, что цепь собрана из пассивных радиоэлементов, так она еще и усиливает сигнал по напряжению в области шипа!? Но не стоит радоваться. Усиливает по напряжению, а не по мощности. Дело в том, что мы получили последовательный колебательный контур, у которого, как вы помните, на частоте резонанса возникает резонанс напряжений. При резонансе напряжений, напряжение на катушке равняется напряжению на конденсаторе.

Но это еще не все. Это напряжение в Q раз больше, чем напряжение, подаваемое на последовательный колебательный контур. А что такое Q? Это добротность. Вас этот шип не должен смущать, так как высота пика зависит от добротности, которая в реальных схемах составляет небольшое значение. Примечательна эта схема также тем, что наклон ее характеристики составляет 12 дБ/октаву, что в два раза лучше, чем у RC и RL фильтров. Кстати, если даже максимальная амплитуда превышает значения в 0 дБ, то все равно полосу пропускания определяем на уровне в -3 дБ. Об этом тоже не стоит забывать.

Все то же самое касается и ФВЧ фильтра

Как я уже сказал, LC фильтры называют уже фильтрами второго порядка и они обеспечивают наклон АЧХ в 12 дБ/октаву.

Сложные фильтры

Что будет, если соединить два фильтра первого порядка друг за другом? Как ни странно, получится фильтр второго порядка.

Его АЧХ будет более крутой, а именно 12 дБ/октаву, что характерно для фильтров второго порядка. Догадайтесь, какой наклон будет у фильтра третьего порядка 😉 ? Все верно, прибавляем 6 дБ/октаву и получаем 18 дБ/октаву. Соответственно, у фильтра 4 -ого порядка наклон АЧХ будет уже 24 дБ/октаву и тд. То есть, чем больше звеньев мы соединим, тем круче будет наклон АЧХ и тем лучше будут характеристики фильтра. Все оно так, но вы забыли то, что каждый последующий каскад вносит свою лепту в ослабление сигнала.

В приведенных схемах мы строили АЧХ фильтра без внутреннего сопротивления генератора а также без нагрузки. То есть в данном случае сопротивление на выходе фильтра равняется бесконечности. Значит, желательно делать так, чтобы каждый последующий каскад имел значительно бОльшее входное сопротивление, чем предыдущий. В настоящее время каскадирование звеньев уже кануло в лету и сейчас используют активные фильтры, которые построены на ОУ.

Разбор фильтра с Алиэкспресс

Для того, чтобы вы уловили предыдущую мысль, мы разберем простой пример от наших узкоглазых братьев. На Алиэкпрессе продаются различные фильтры для сабвуфера. Рассмотрим один из них.

Как вы заметили, на нем написаны характеристики фильтра: данный тип фильтра рассчитан на сабвуфер мощностью 300 Ватт, наклон его характеристики 12 дБ/октаву. Если соединять к выходу фильтра саб с сопротивлением катушки в 4 Ома, то частота среза составит 150 Гц. Если же сопротивление катушки саба 8 Ом, то частота среза составит 300 Гц.

Для полных чайников продавец даже привел схему в описании товара. Выглядит она вот так:

Далее мы собираем эту схему в Proteus. Так как при параллельном соединении конденсаторов номиналы суммируются, я сразу заменил 4 конденсатора одним.

Чаще всего можно увидеть прямо на динамиках значение сопротивления катушки на постоянном токе: 2 Ω, 4 Ω, 8 Ω. Реже 16 Ω. Значок Ω после цифр обозначает Омы. Также не забывайте, что катушка в динамике обладает индуктивностью.

Как ведет себя катушка индуктивности на разных частотах?

Как вы видите, на постоянном токе катушка динамика обладает активным сопротивлением, так как она намотана из медного провода. На низких частотах в дело вступает реактивное сопротивление катушки, которое вычисляется по формуле:

ХL — сопротивление катушки, Ом

П — постоянная и равна приблизительно 3,14

L — индуктивность, Гн

Так как сабвуфер предназначен именно для низких частот, значит, последовательно с активным сопротивлением самой катушки добавляется реактивное сопротивление этой же самой катушки. Но в нашем опыте мы это учитывать не будем, так как не знаем индуктивность нашего воображаемого динамика. Поэтому, все расчеты в опыте берем с приличной погрешностью.

Читайте также:  Шебби шик своими руками мастер класс

Как утверждает китаец, при нагрузке на фильтр динамика в 4 Ома, его полоса пропускания будет доходить до 150 Герц. Проверяем так ли это:

Как вы видите, частота среза на уровне в -3 дБ составила почти 150 Герц.

Нагружаем наш фильтр динамиком в 8 Ом

Частота среза составила 213 Гц.

В описании на товар утверждалось, что частота среза на 8-омный саб составит 300 Гц. Думаю, можно поверить китайцам, так как во-первых, все данные приближенные, а во-вторых, симуляция в программах далека от реальности. Но суть опыта была не в этом. Как мы видим на АЧХ, нагружая фильтр сопротивлением большего номинала, частота среза сдвигается в большую сторону. Это также надо учитывать при проектировании фильтров.

Полосовые фильтры

В прошлой статье мы с вами рассматривали один из примеров полосового фильтра

Вот так выглядит АЧХ этого фильтра.

Особенность таких фильтров такова, что они имеют две частоты среза. Определяются они также на уровне в -3дБ или на уровне в 0,707 от максимального значения коэффициента передачи, а еще точнее Ku max/√2.

Полосовые резонансные фильтры

Если нам надо выделить какую-то узкую полосу частот, для этого применяются LC-резонанcные фильтры. Еще их часто называют избирательными. Давайте рассмотрим одного из их представителя.

LC-контур в сочетании с резистором R образует делитель напряжения. Катушка и конденсатор в паре создают параллельный колебательный контур, который на частоте резонанса будет иметь очень высокий импеданс, в народе – обрыв цепи. В результате, на выходе цепи при резонансе будет значение входного напряжения, при условии если мы к выходу такого фильтра не цепляем никакой нагрузки.

АЧХ данного фильтра будет выглядеть примерно вот так:

В реальной же цепи пик характеристики АЧХ будет сглажен за счет потерь в катушке и конденсаторе, так как катушка и конденсатор обладают паразитными параметрами.

Если взять по оси Y значение коэффициента передачи, то график АЧХ будет выглядеть следующим образом:

Постройте прямую на уровне в 0,707 и оцените полосу пропускания такого фильтра. Как вы можете заметить, она будет очень узкой. Коэффициент добротности Q позволяет оценить характеристику контура. Чем большее добротность, тем острее характеристика.

Как же определить добротность из графика? Для этого надо найти резонансную частоту по формуле:

f0— это резонансная частота контура, Гц

L — индуктивность катушки, Гн

С — емкость конденсатора, Ф

Подставляем L=1mH и С=1uF и получаем для нашего контура резонансную частоту в 5033 Гц.

Теперь надо определить полосу пропускания нашего фильтра. Делается это как обычно на уровне в -3 дБ, если вертикальная шкала в децибелах, либо на уровне в 0,707, если шкала линейная.

Давайте увеличим верхушку нашей АЧХ и найдем две частоты среза.

Следовательно, полоса пропускания Δf=f2 – f1 = 5233-4839=394 Гц

Ну и осталось найти добротность:

Режекторные фильтры

Другой разновидностью LC схем является последовательная LC-схема.

Ее АЧХ будет выглядеть примерно вот так:

Как можно увидеть, такая схема на резонансной частоте и вблизи нее как бы вырезает небольшой диапазон частот. Здесь вступает в силу резонанс последовательного колебательного контура. Как вы помните, на резонансной частоте сопротивление контура будет равняться его активному сопротивлению. Активное сопротивление контура составляют паразитные параметры катушки и конденсатора, поэтому падение напряжения на самом контуре будет равняться падению напряжения на паразитном сопротивлении, которое очень мало. Такой фильтр называют узкополосным режекторным фильтром.

На практике звенья таких фильтров каскадируют, чтобы получить различные фильтры с требуемой полосой пропускания. Но есть один минус у фильтров, в которых имеется катушка индуктивности. Катушки дорогие, громоздкие, имеют много паразитных параметров. Они чувствительны к фону, который магнитным путем наводится от расположенных поблизости силовых трансформаторов.

Конечно, этот недостаток можно устранить, поместив катушку индуктивности в экран из мю-металла, но от этого она станет только дороже. Проектировщики всячески пытаются избежать катушек индуктивности, если это возможно. Но, благодаря прогрессу, в настоящее время катушки не используются в активных фильтрах, построенных на ОУ.

Заключение

В радиоэлектронике фильтры находят множество применений. Например, в области электросвязи полосовые фильтры используются в диапазоне звуковой частоты (20 Гц-20 КГц). В системах сбора данных используются фильтры низких частот (ФНЧ). В музыкальной аппаратуре фильтры подавляют шумы, выделяют определенную группу частот для соответствующих динамиков, а также могут изменять звучание. В системах источников питания фильтры часто используются для подавления частот, близких к частоте сети 50/60 Герц. В промышленности фильтры применяются для компенсации косинуса фи, а также используются как фильтры гармоник.

Резюме

Электрические фильтры используются для выделения какого-либо диапазона частота и глушат ненужные частоты.

Фильтры, построенные на пассивных радиоэлементах, таких как резисторы, катушки индуктивности и конденсаторы, называют пассивными фильтрами. Фильтры в которых имеется активный радиоэлемент, типа транзистора или ОУ, называются активными фильтрами.

Чем круче спад характеристики АЧХ, тем лучше избирательные свойства фильтра.

Ссылка на основную публикацию
Adblock detector