Электромагнитные волны называются световыми в диапазоне

Электромагнитные волны называются световыми в диапазоне

Электромагнитными волнами называется процесс распространения в пространстве переменного электромагнитного поля. Теоретически существование электромагнитных волн предсказано английским ученым Максвеллом в 1865 г., а впервые они экспериментально получены немецким ученым Герцем в 1888 г.

Из теории Максвелла вытекают формулы, описывающие колебания векторов и. Плоская монохроматическая электромагнитная волна, распространяющаяся вдоль оси x, описывается уравнениями

Здесь E и H — мгновенные значения, а Em и Hm — амплитудные значения напряженности электрического и магнитного полей, ω — круговая частота, k — волновое число. Векторы и колеблются с одинаковой частотой и фазой, взаимно перпендикулярны и, кроме того, перпендикулярны вектору — скорости распространения волны (рис. 3.7). Т. е. электромагнитные волны поперечны.

В вакууме электромагнитные волны распространяются со скоростью. В среде с диэлектрической проницаемостью ε и магнитной проницаемостью µ скорость распространения электромагнитной волны равна:

Частота электромагнитных колебаний, так же, как и длина волны, могут быть в принципе любыми. Классификация волн по частоте (или длине волны) называется шкалой электромагнитных волн. Электромагнитные волны делятся на несколько видов.

Радиоволны имеют длину волны от 10 3 до 10 -4 м.

Световые волны включают:

инфракрасное излучение,
видимый свет в интервале ,
ультрафиолетовое излучение.

Рентгеновское излучение .

Световые волны — это электромагнитные волны, которые включают в себя инфракрасную, видимую и ультрафиолетовую части спектра. Длины световых волн в вакууме, соответствующие основным цветам видимого спектра, указаны в нижеприведенной таблице. Длина волны дана в нанометрах.

Таблица

Цвет Длина волны, нм Цвет Длина волны, нм
красный 760 — 620 голубой 510 — 480
оранжевый 620 — 590 синий 480 — 450
желтый 590 — 575 фиолетовый 450 — 380
зеленый 575 — 510

Для световых волн характерны те же свойства, что и для электромагнитных волн.

1. Световые волны поперечны.

2. В световой волне колеблются вектора и.

Опыт показывает, что все виды воздействий (физиологическое, фотохимическое, фотоэлектрическое и др.) вызываются колебаниями электрического вектора . Его называют световым вектором.

Амплитуду светового вектора Em часто обозначают буквой A и вместо уравнения (3.30) используют уравнение (3.24).

3. Скорость света в вакууме.

Скорость световой волны в среде определяется по формуле (3.29). Но для прозрачных сред (стекло, вода) обычно.

Для световых волн вводится понятие — абсолютный показатель преломления.

Абсолютным показателем преломления называется отношение скорости света в вакууме к скорости света в данной среде

Из (3.29), с учетом того, что для прозрачных сред , можно записать равенство.

Для вакуума ε = 1 и n = 1. Для любой физической среды n > 1. Например, для воды n = 1,33, для стекла . Среда с большим показателем преломления называется оптически более плотной. Отношение абсолютных показателей преломления называется относительным показателем преломления:

4. Частота световых волн очень велика. Например, для красного света с длиной волны .

При переходе света из одной среды в другую частота света не изменяется, но изменяется скорость и длина волны.

Для вакуума — ; для среды — , тогда

.

Отсюда длина волны света в среде равна отношению длины волны света в вакууме к показателю преломления

5. Поскольку частота световых волн очень велика , то глаз наблюдателя не различает отдельных колебаний, а воспринимает усредненные потоки энергии. Таким образом вводится понятие интенсивности.

Интенсивностью называется отношение средней энергии, переносимой волной, к промежутку времени и к площади площадки, перпендикулярной направлению распространения волны:

Поскольку энергия волны пропорциональна квадрату амплитуды (см. формулу (3.25)), то интенсивность пропорциональна среднему значению квадрата амплитуды

Характеристикой интенсивности света, учитывающей его способность вызывать зрительные ощущения, является световой поток — Ф.

6. Волновая природа света проявляется, например, в таких явлениях, как интерференция и дифракция.

Вернуться на главную страницу. или ЗАКАЗАТЬ РАБОТУ

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Электромагнитные волны – это результат многолетних споров и тысяч экспериментов. Доказательство наличия сил природного происхождения, способных перевернуть сложившееся общество. Это фактическое принятие простой истины – мы слишком мало знаем о мире, в котором живем.

Читайте также:  Площадь территории кремля в москве

Физика – королева среди наук о природе, способная дать ответы на вопросы происхождения не только жизни, но и самого мира. Она дает ученым способность изучать электрическое и магнитное поле, взаимодействие которых порождает ЭМВ (электромагнитные волны).

Что такое электромагнитная волна

Не так давно на экраны нашей страны вышел фильм «Война токов» (2018), где с ноткой художественного вымысла рассказывается о споре двух великих ученых Эдисона и Теслы. Один пытался доказать выгоду от постоянного тока, другой — от переменного. Эта продолжительная битва закончилась только в седьмом году двадцать первого века.

В самом начале «сражения» другой ученый, занимаясь проработкой теории относительности, описывал электричество и магнетизм как похожие явления.

В тридцатом году девятнадцатого века физик английского происхождения Фарадей открыл явление электромагнитной индукции и ввел термин единства поля электрического и магнитного. Также он утверждал, что движение в этом поле ограничено скоростью света.

Чуть позже теория английского ученого Максвелла поведала о том, что электричество вызывает магнитный эффект, а магнетизм — появление электрического поля. Поскольку оба этих поля движутся в пространстве и времени, то образуют возмущения – то есть электромагнитные волны.

Говоря проще электромагнитная волна – это пространственное возмущение электромагнитного поля.

Экспериментально существование ЭМВ доказал немецкий ученый Герц.

Электромагнитные волны, их свойства и характеристика

Электромагнитные волны характеризуются следующими факторами:

  • длиной (достаточно широким диапазоном);
  • частотой;
  • интенсивностью (или амплитудой колебания);
  • количеством энергии.

Основное свойство всех электромагнитных излучений – это величина длины волны (в вакууме), которая обычно указывается в нанометрах для видимого светового спектра.

Каждый нанометр представляет тысячную часть микрометра и измеряется расстоянием между двумя последовательными пиками (вершинами).

Соответствующая частота излучения волны – это число синусоидальных колебаний и обратная пропорциональность длине волны.

Частота обычно измеряется в Герцах. Таким образом, более длинные волны соответствуют более низкой частоте излучения, а более короткие — высокой частоте излучения.

Основные свойства волн:

Скорость электромагнитной волны

Фактическая скорость распространения электромагнитной волны зависит от материала, которым обладает среда, ее оптической плотности и наличия такого фактора как давление.

Кроме того, различные материалы имеют разную плотность «упаковки» атомов, чем ближе они расположены, тем меньше расстояние и выше скорость. В результате скорость электромагнитной волны зависит от материала, через который она движется.

Подобные эксперименты ставятся в адронном коллайдере, где главным инструментом воздействия является заряженная частица. Изучение электромагнитных явлений происходит там на квантовом уровне, когда свет раскладывается на мельчайшие частицы – фотоны. Но квантовая физика – это отдельная тема.

Согласно теории относительности, наибольшая скорость распространения волны не может превышать световую. Конечность скоростного предела в своих трудах описал Максвелл, объясняя это наличием нового поля – эфир. Современная официальная наука подобную взаимосвязь пока не изучала.

Электромагнитное излучение и его виды

Электромагнитное излучение состоит из электромагнитных волн, которые наблюдаются в виде колебания электрического и магнитного полей, распространяющиеся на скорости света (300 км за секунду в вакууме).

Когда ЭМ-излучение взаимодействует с веществом, его поведение качественно меняется по мере изменения частоты. Отчего оно преобразуется в:

  1. Радиоизлучение. На радиочастотах и микроволновых частотах эм–излучение взаимодействует с веществом в основном в виде общего набора зарядов, которые распределены по большому количеству затронутых атомов.
  2. Инфракрасное излучение. В отличие от низкочастотного радиоизлучения и СВЧ-излучения, инфракрасный излучатель обычно взаимодействует с диполями, присутствующими в отдельных молекулах, которые по мере вибрации изменяются на концах химической связи на атомном уровне.
  3. Видимое световое излучение. По мере того как частота увеличивается в видимый ряд, фотоны имеют достаточную энергию для изменения скрепленной структуры некоторых отдельно взятых молекул.
  4. Ультрафиолетовое излучение. Частота увеличивается. В ультрафиолетовых фотонах теперь достаточно энергии (более трех вольт), чтобы воздействовать вдвойне на связи молекул, постоянно химически их перестраивая.
  5. Ионизирующее излучение. На самых высоких частотах и наименьших по длине волны. Поглощение этих лучей материей затрагивает весь гамма-спектр. Самый известный эффект – радиация.
Читайте также:  Гост приемка продукции по качеству

Что является источником электромагнитных волн

Мир, согласно молодой теории о происхождении всего, возник благодаря импульсу. Он освободил колоссальную энергию, которую назвали большим взрывом. Так в истории мироздания появилась первая эм-волна.

В настоящее время к источникам формирования возмущений относятся:

  • эмв излучает искусственный вибратор;
  • результат колебания атомных групп или частей молекул;
  • если происходит воздействие на внешнюю оболочку вещества (на атомно-молекулярном уровне);
  • эффект схожий со световым;
  • при ядерном распаде;
  • последствие торможения электронов.

Шкала и применение электромагнитных излучений

Под шкалой излучения понимается большой диапазон частоты волны от 3·10 6 ÷10 -2 до 10 -9 ÷ 10 -14 .

Каждая часть электромагнитного спектра обладает обширной областью применения в нашей повседневной жизни:

  1. Волны маленькой длины (микроволны). Данные электроволны используются в качестве спутникового сигнала, поскольку способны миновать атмосферу земли. Также немного усиленный вариант используется для разогрева и готовки на кухне – это микроволновая печь. Принцип приготовления прост – под действием микроволнового излучения поглощаются и ускоряются молекулы воды, отчего блюдо нагревается.
  2. Длинные возмущения используется в радиотехнологиях (радиоволны). Их частота не позволяет пройти облака и атмосферу, благодаря чему нам доступно Фм-радио и телевидение.
  3. Инфракрасное возмущение непосредственно связано с теплом. Увидеть его практически невозможно. Попробуйте заметить без специального оборудования луч из пульта управления вашего телевизора, музыкального центра или магнитолы в машине. Приборы, способные считывать подобное волны, используются в армиях стран (прибор ночного виденья). Также в индуктивных плитах на кухнях.
  4. Ультрафиолет также имеет отношение к теплу. Самый мощный природный «генератор» такого излучения – это солнце. Именно из-за действия ультрафиолета на коже человека образуется загар. В медицине этот тип волн используется для дезинфекции инструментов, убивая микробы и бактерии.
  5. Гамма-лучи – это самый мощный тип излучения, в котором сконцентрировалось коротковолновое возмущение с большой частотой. Энергия, заключенная в эту часть электромагнитного спектра, дает лучам большую проникающую способность. Применима в ядерной физике – мирное, ядерное оружие – боевое применение.

Влияние электромагнитных волн на здоровье человека

Измерение влияния эмв на человека – это обязанность ученых. Но не нужно быть специалистом, чтобы оценить интенсивность ионизирующего излучения – оно провоцирует изменения на уровне ДНК человека, что влечет за собой такие серьезные заболевания как онкология.

Не зря пагубное воздействие катастрофы ЧАЭС считается одной самых опасных для природы. Несколько квадратных километров некогда красивой территории стали зоной полного отчуждения. До конца века взрыв на ЧАЭС представляет опасность, пока не закончится полураспад радионуклидов.

Некоторые типы эмв (радио, инфракрасные, ультрафиолет) не наносят человеку сильного вреда и представляют собой лишь дискомфорт. Ведь магнитное поле земли нами практически не ощущается, а вот эмв от мобильного телефона может вызвать головную боль (воздействие на нервную систему).

Для того чтобы обезопасить здоровье от электромагнетизма, следует просто использовать меры разумной предосторожности. Вместо сотен часов за компьютерной игрой выйти погулять.

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию. Длина волны зависит от скорости распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света (принцип максимальности скорости света не нарушается, так как скорость переноса энергии и информации в любом случае не превышает световой скорости).

Описанием свойств и параметров электромагнитного излучения занимается электродинамика.

Существуют различные теории, позволяющие смоделировать и исследовать свойства и проявления электромагнитного излучения. Наиболее фундаментальной из них является квантовая электродинамика, из которой путём тех или иных упрощений можно в принципе получить все перечисленные ниже теории, имеющие широкое применение в своих областях. Для описания относительно низкочастотного электромагнитного излучения в макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла, причём существуют упрощения в прикладных применениях. Для оптического излучения (вплоть до рентгеновского диапазона) применяют оптику (в частности, волновую оптику, когда размеры некоторых частей оптической системы близки к длинам волн; квантовую оптику, когда существенны процессы поглощения, излучения и рассеяния фотонов; геометрическую оптику — предельный случай волновой оптики, когда длиной волны излучения можно пренебречь). Гамма-излучение чаще всего является предметом ядерной физики, с других позиций изучается воздействие электромагнитного излучения в радиологии.

Читайте также:  Эскиз козырька над входом

Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:

  • наличие трёх взаимно перпендикулярных (в вакууме) векторов: волнового вектора, вектора напряжённости электрического поляE и вектора напряжённости магнитного поляH.
  • Электромагнитные волны — это поперечные волны, в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том числе и через вакуум.

Диапазоны электромагнитного излучения

Электромагнитное излучение принято делить по частотным диапазонам (см. таблицу). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.

Название диапазона Длины волн, λ Частоты, ν Источники
Радиоволны Сверхдлинные более 10 км менее 30 кГц Атмосферные явления. Переменные токи в проводниках и электронных потоках (колебательные контуры).
Длинные 10 км — 1 км 30 кГц — 300 кГц
Средние 1 км — 100 м 300 кГц — 3 МГц
Короткие 100 м — 10 м 3 МГц — 30 МГц
Ультракороткие 10 м — 1 мм 30 МГц — 150 ГГц
Оптическое излучение Инфракрасное излучение 1 мм — 780 нм 150 ГГц — 429 ТГц Излучение молекул и атомов при тепловых и электрических воздействиях.
Видимое излучение 780—380 нм 429 ТГц — 750 ТГц
Ультрафиолетовое 380 — 10 нм 7,5×10 14 Гц — 3×10 16 Гц Излучение атомов под воздействием ускоренных электронов.
Ионизирующее электромагнитное излучение Рентгеновские 10 — 5×10 −3 нм 3×10 16 — 6×10 19 Гц Атомные процессы при воздействии ускоренных заряженных частиц.
Гамма менее 5×10 −3 нм более 6×10 19 Гц Ядерные и космические процессы, радиоактивный распад.

Радиоволны. Ультракороткие радиоволны принято разделять на метровые, дециметровые, сантиметровые, миллиметровые и субмиллиметровые (микрометровые). Волны с длиной λ ( ν > 300 МГц ) принято также называть микроволнами или волнами сверхвысоких частот (СВЧ). Деление радиоволн на диапазоны см. в статьях Радиоизлучение и Диапазоны частот.

Ионизирующее электромагнитное излучение. К этой группе традиционно относят рентгеновское и гамма-излучение, хотя, строго говоря, ионизировать атомы может и ультрафиолетовое излучение, и даже видимый свет. Границы областей рентгеновского и гамма-излучения могут быть определены лишь весьма условно. Для общей ориентировки можно принять, что энергия рентгеновских квантов лежит в пределах 20 эВ — 0,1 МэВ , а энергия гамма-квантов — больше 0,1 МэВ . В узком смысле гамма-излучение испускается ядром, а рентгеновское — атомной электронной оболочкой при выбивании электрона с низколежащих орбит, хотя эта классификация неприменима к жёсткому излучению, генерируемому без участия атомов и ядер (например, синхротронному или тормозному излучению).

Радиоволны

Из-за больших значений λ распространение радиоволн можно рассматривать без учёта атомистического строения среды. Исключение составляют только самые короткие радиоволны, примыкающие к инфракрасному участку спектра. В радиодиапазоне слабо сказываются и квантовые свойства излучения, хотя их всё же приходится учитывать, в частности, при описании квантовых генераторов и усилителей сантиметрового и миллиметрового диапазонов, а также молекулярных стандартов частоты и времени, при охлаждении аппаратуры до температур в несколько кельвинов.

Радиоволны возникают при протекании по проводникам переменного тока соответствующей частоты. И наоборот, проходящая в пространстве электромагнитная волна возбуждает в проводнике соответствующий ей переменный ток. Это свойство используется в радиотехнике при конструировании антенн.

Естественным источником волн этого диапазона являются грозы. Считается, что они же являются источником стоячих электромагнитных волн Шумана.

Ссылка на основную публикацию
Adblock detector