No Image

Как усилить профильную трубу от прогиба

СОДЕРЖАНИЕ
1 054 просмотров
21 февраля 2019

Общие положения

Усиление металлических конструкций может производиться после их разгружения или под нагрузкой:

увеличением поперечного сечения отдельных элементов и узлов их соединений,

изменением расчетной схемы конструкций.

Особенностью усиления металлических конструкций является доступность сечения по всей длине элементов и свариваемость металла, позволяющие уменьшить трудоемкость обеспечения совместной работы основного и дополнительного элементов.

Однако нагрев элементов при сварке может снижать его прочность. При температуре более 550°С металл переходит в пластическое состояние и выключается из работы по восприятию усилий. Степень снижения прочности металла в месте сварки зависит от способа и режима сварки, толщины и ширины элемента, а также от направления сварных швов. Так, для продольных швов снижение прочности составляет до 15 %, а для поперечных – достигает 40 %. Исходя из этого, запрещается применение поперечных сварных швов при усилении металлических конструкций под нагрузкой.

С целью безопасности производства работ и повышения эффективности усиления металлических элементов и узлов их сопряжений следует стремиться к максимальному разгружению конструкции перед усилением, чтобы максимальные напряжения не превышали (где – расчетное сопротивление стали по пределу текучести).

15.2. Усиление металлических конструкций
увеличением их поперечного сечения

Усиление металлических конструкций, работающих на растяжение, сжатие и изгиб, увеличением поперечного сечения элементов производится присоединением дополнительных элементов. Совместная работа дополнительных элементов усиления с усиливаемой конструкцией обеспечивается путем сварки, а также с помощью болтового или заклепочного соединения.

При выполнении усиления центрально-растянутых и сжатых металлических конструкций следует стремиться к сохранению центровки усиливаемых элементов и узлов соединений (то есть дополнительные элементы необходимо располагать так, чтобы положение центра тяжести элемента после усиления не изменялось), в противном случае, требуется проверка прочности усиленного элемента и узла сопряжения с учетом появившегося эксцентриситета.

При конструировании усиления сварные швы, болтовые и заклепочные соединения необходимо располагать в удобных для исполнения и контроля качества местах. Кроме того, при сварных соединениях следует учитывать появление дополнительных и остаточных сварочных деформаций. Например, усиление ферм следует начинать с элементов и узлов нижнего пояса, а затем производить усиление верхнего пояса.

Обеспечение совместной работы дополнительных деталей при усилении растянутых элементов производится их обязательной заводкой в узлы на расстояние, необходимое для размещения прикрепляющих швов, достаточных для полного включения в работу у границы узловой фасонки.

В качестве дополнительных элементов при усилении центрально-растянутых элементов используются, как правило, полосы и круглые стержни (рис. 15.1). При этом в случае приварки усиливающих полос к полкам и перу спаренных уголков требуется срезка выступающих концов соединительных планок.

В случае обеспечения совместной работы дополнительных элементов с усиливаемым растянутым элементом посредством сварки сварные швы рекомендуется принимать с высотой катета шва 3…6 мм (в зависимости от толщины соединяемых деталей), а швы, расположенные вблизи края элемента, следует выполнять сплошными, т.к. прерывистые швы создают многочисленные «надрезы» – концентраторы напряжений, способствующие хрупкому разрушению при растяжении.

Усиление сжатых элементов стальных конструкций производится:

– увеличением поперечного сечения элемента при незначительном изменении его гибкости,

– увеличением поперечного сечения элемента со значительным уменьшением его гибкости,

– уменьшением расчетной длины элемента без изменения поперечного сечения.

В практике усиления металлических конструкций первый метод применяется для сжатых элементов небольшой длины (коротких), когда прочность элемента определяется площадью его поперечного сечения. Два других метода усиления характерны для длинных сжатых элементов, теряющих устойчивость при разрушении.

В первом случае для усиления центрально-сжатых элементов, аналогично растянутым, в качестве дополнительных элементов могут быть использованы полосы и круглые стержни, эффективно увеличивающие площадь поперечного сечения, но незначительно изменяющие его жесткость при изгибе (см. рис. 15.1). Как и в случае растянутых элементов, дополнительные детали усиления должны заводиться в узлы сопряжения.

При усилении сжатых элементов увеличением поперечного сечения с уменьшением его гибкости в качестве дополнительных элементов используются прокатные профили в виде труб, уголков, швеллеров и т.д., развивающих сечение и эффективно повышающих его жесткость при изгибе (рис. 15.2). При этом если нет опасности потери устойчивости для сечения не усиленного элемента вблизи узла, детали усиления могут быть не заведены в узел и не прикреплены к нему. Допускается применение прерывистых швов, уменьшающих сварочные деформации, сокращающие сроки сварочных работ и массу наплавленного металла.

Рис. 15.1. Усиление увеличением поперечного сечения без изменения гибкости металлических элементов: а – из спаренных уголков; б – из спаренных швеллеров; в – из двутавров

Рис. 15.2. Усиление увеличением поперечного сечения с уменьшением гибкости
металлических элементов: а – из спаренных уголков; б – из спаренных швеллеров
и двутавров; в – сварных сплошного сечения; г – клепаных

Уменьшение расчетной длины отдельных элементов эффективно в случае, когда не обеспечена их устойчивость. Усиление сжатых элементов уменьшением его расчетной длины в плоскости стропильной фермы производится установкой дополнительных раскосов или подвесок (рис. 15.3, а), из плоскости фермы или для отдельно стоящих стоек – предварительно напряженных шпренгелей (рис. 15.3, б, в).

Рис. 15.3. Усиление стальных конструкций за счет уменьшения их расчетной длины:

а – установкой дополнительных раскосов; б, в – установкой предварительно
напряженных шпренгелей: 1 – усиливаемый элемент, 2 – дополнительные раскосы,
3 – дополнительная подвеска, 4 – предварительно напряженные шпренгели

Усиление изгибаемых металлических конструкций имеет следующие особенности:

— увеличение поперечного сечения изгибаемого элемента можно ограничивать лишь зоной действия максимальных изгибающих моментов, где усиление требуется по расчету;

— при конструировании усиления следует стремиться к наиболее эффективному размещению дополнительных деталей (на возможно большем расстоянии от нейтральной оси неусиленного сечения);

— учитывая влияние сварочных деформаций при усилении, увеличивающих прогиб, усиление изгибаемых элементов необходимо начинать с нижнего пояса, затем при необходимости следует усилить стенку, в последнюю очередь – верхний пояс.

Некоторые варианты конструктивных схем усиления стальных балок приведены на рис. 15.4 и 15.5.

Рис. 15.4. Усиление изгибаемой балочной конструкции в пролете

Рис. 15.5. Усиление стальных балок увеличением поперечного сечения с применением:

Читайте также:  Почему ненагруженный трансформатор потребляет очень мало энергии

а – пластин; б – стержней; в – уголков; г – труб; д – двутавров

Усиленная стальная балка кроме условия прочности должна удовлетворять условиям общей и местной устойчивости. Повышение местной устойчивости балок достигается установкой дополнительных поперечных (рис. 15.6, а), продольных (рис. 15.6, б) и диагональных ребер жесткости (рис. 15.6, в). С целью уменьшения концентрации местных напряжений у концов коротких поперечных ребер жесткости в сжатой зоне они должны быть окаймлены продольными ребрами жесткости (рис. 15.6, г).

Повышение местной устойчивости элементов стальных конструкций может быть достигнуто также их бетонированием (рис. 15.7, а) или прикреплением к ним деревянных деталей (рис. 15.7, б, в).

Рис. 15.6. Усиление стенок стальных балок дополнительными ребрами жесткости:

а – поперечными; б – продольными; в – диагональными; г – короткими поперечными
с окаймлением их продольными ребрами жесткости

Рис. 15.7. Усиление стенок стальных конструкций: а – заполнением полости колонны бетоном; б, в – прикреплением деревянных брусьев; 1 – усиливаемая стальная
конструкция, 2 – бетон, 3 – отверстие в стенке для заполнения бетоном,
4 – деревянные брусья, 5 – стяжной болт

15.3. Расчет металлических конструкций,
усиленных увеличением их поперечного сечения

Расчет усиления стальных конструкций увеличением их поперечного сечения производится исходя из стадии напряженно-деформированного состояния и принятой гипотезы:

по упругой стадии – сечение дополнительного элемента усиления воспринимает только усилие от нагрузок, приложенных к конструкции после усиления;

по пластической стадии – при достижении напряжений в сечении усиливаемого элемента предела текучести происходит перераспределение и выравнивание напряжений с сечением дополнительного элемента.

Схема напряженного состояния металлической балки, усиленной под нагрузкой, приведена на рис. 15.8.

Рис. 15.8. Схема напряженного состояния балки, усиленной под нагрузкой:

а – в упругой стадии; б – в пластической стадии

Расчет усиления металлических конструкций по пластической стадии дает более экономичные решения, но не для всех случаев разрушения экспериментально подтвержден. Поэтому данный вариант расчета применяется при действии статических нагрузок на усиливаемые элементы при отсутствии опасности потери устойчивости. В остальных случаях расчет производится по упругой стадии.

Расчет усиленных центрально-растянутых и коротких сжатых элементов производится из условий прочности:

— по упругой стадии

; (15.1)

— по пластической стадии

, (15.2)

где – соответственно продольное усилие, действующее в элементе при его усилении и продольное усилие от дополнительной нагрузки, приложенной после усиления; – соответственно площадь поперечного сечения основного и дополнительного элементов; – расчетное сопротивление стали основного элемента; – коэффициент условий работы элемента конструкции по [11, приложение 4*].

Расчет усиления сжатых элементов по условию устойчивости производится с учетом того, что потеря устойчивости элемента, усиленного под нагрузкой, может произойти только для всего усиленного сечения. Поэтому в расчете используется коэффициент продольного изгиба , определенный по гибкости элемента после усиления.

Расчет усиленных центрально-сжатых элементов выполняется из условия обеспечения устойчивости

. (15.3)

Возможные искривления от сварки при проверке устойчивости допускается учитывать с помощью коэффициента условий работы .

Расчет прочности по крайнему сжатому или растянутому волокнам усиленных изгибаемых элементов производится из условий:

— по упругой стадии для крайнего волокна основного сечения на расстоянии от центра тяжести основного сечения и расстоянии
от центра тяжести усиленного сечения

; (15.4)

— по упругой стадии для крайнего волокна дополнительного сечения

; (15.5)

— по пластической стадии

, (15.6)

где – соответственно изгибающий момент, действующий в элементе при его усилении и изгибающий момент от дополнительной нагрузки, приложенной после усиления; – момент инерции поперечного сечения элемента соответственно до усиления и после усиления; – расчетное сопротивление стали соответственно основного и дополнительного элемента при растяжении или сжатии; — расстояние от центра тяжести усиленного сечения до крайнего волокна дополнительного элемента; — пластический момент сопротивления поперечного сечения усиленного элемента, принимаемый не более 1,2 упругого момента сопротивления сечения усиленного элемента.

Для усиленных изгибаемых элементов должно выполняться условие прочности на сдвиг по контакту основного и дополнительного сечения

, (15.7)

где – статический момент части сечения дополнительной детали усиления относительно нейтральной оси; – толщина основного или дополнительного элемента в месте соединения; – расчетное сопротивление стали срезу основного или дополнительного элемента.

Проверка местной устойчивости стенки балочных конструкций после усиления производится для всех отсеков между поперечными ребрами жесткости без учета начальных напряжений в ней от нагрузки при усилении по методике действующих норм.

Швы, прикрепляющие дополнительные детали усиления к основному сечению усиливаемых элементов, рассчитываются на восприятие сдвигающих усилий, равных предельным усилиям на растяжение или сжатие для дополнительных деталей усиления.

Усиление отдельных элементов металлических конструкций, имеющих погнутости, трещины, вмятины и разрывы сечений, производится, как правило, после их разгружения выравниванием, присоединением дополнительных деталей (рис. 15.9, 15.10.) или заменой поврежденной части (рис. 15.11).

Рис. 15.9. Усиление элементов стальных конструкций, имеющих повреждения,
накладками: а – из уголка; б – из швеллера с дополнительными соединительными планками; в – из пластины

Рис. 15.10. Усиление искривленных стальных элементов шпренгелем

Рис. 15.11. Восстановление элементов стальных конструкций вырезанием
и заменой поврежденной части: а – элементов из спаренных уголков;
б – элементов из одиночного уголка

Дата добавления: 2016-01-20 ; просмотров: 23726 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Приветствую. В гаражном боксе 2 этажа. Верхний и подвал. Смотровую яму делит труба на 120мм. Очень не к месту и очень мешается, но перекрытие очень тонкое в этом месте, в общем, как ее убрать "малой кровью"? Трвба идёт от стены до стены. Колонны под срезами не вариант

Содержание

Смотрите также

Комментарии 31

Трубу сейчас не трогай. Срежешь её если, то в один прекрасный день, звиздякнешься в яму вместе с полом и автомобилем!
То что на фото, херня а не перекрытия. Ставь швелера как уже сказали или двутавр, или рельсы, что найдешь нормальное, считай с запасом, и заливай нормальным заводским бетоном с армировкой! Я б с низу ещё укосины сделал. Лучше перебдеть, чем потом бздеть и репу чесать как так вышло)))

Да тут гаражу 20 лет. Залить бетон армированный 15см в качестве перекрытия. Не знаю зачем труба. Но она у всех. Видать нефтепровод в Москву. Сначала усилить надо, потом резать, конечно, спасибо. Это усиление придется сваривать, места не хватить протащить и вставить целиком, рельсу нормально не сварить. С 1 стороны думаю в стену вбить, а с другой опору на выступ стены. И таких надо 2. Денег море надо на металл, е мое.

Угу. Металл сейчас космос стоит. Блин как будто мы его не сами варим. Довели блин страну…((
пи … пи… пи… (вырезано цензурой)

середину срезаешь, по краям ставишь столбы (колонны 120мм)
и делаешь косынки. Так может что то получится.
А вообще как и писали ниже два швеллера вдоль ямы пускай если есть куда их приварить и так же косынки ставь с каждой из сторон.

Запомни Брат, труба не работает на прогиб…
Резать к чёртовой матери…

То есть трубу на перекрытии использовать нельзя?

Конечно, какой её элемент работает на изгиб, кроме прочности металла?
Сечение на изгиб посмотри.
Закрывай тему, остальное базар.

Так а если труба с запасом?

Ещё раз говорю, труба не работает на прогиб!

Просто у меня лежит в гараже и работает

Миша,
работает швеллер, двутавр, а труба провисает, у неё нет рабочей полки, не смеши…

Вообще то я Саша, а трубу ща специально схожу сфоткаю

Хорошо Саша, извини, труба изгибается до предела текучести металла с учетом обжимки и сопротивления окружающего материала. …

вот гаражик перекрыт в 2003 пролет 8 метров может чуть больше
в ширину стоят камаз 4310, турик и мтз82

ну труба конечно с "небольшим" запасом от скважины диаметр наверное 240 или какие они там бывают толщина в палец

на потолке доски 50ка береза
крыша в один скат шифер 11 метровый уклон,
в коньке метра два высота

Анекдот…
Разговаривает глухой с немым…
Труба…
Бежим…
Прогнулась…
Нет…
Смешно…
Закрыли тему для обсуждений…
Самое страшное в жизни безграмотность умноженная на безалаберную упертость…

Учиться, учиться и ещё раз учиться…

ну работает же, за это был разговор

Хорошо.
Прогиб трубы, т.е. разница по провисанию у стен и по центру пролета строения, даже на фото виден.
Когда нибудь, один толстый человек, в одну снежную зиму, когда снег подтает, залезит на крышу для её очистки и труба сломав свое малое сопротивление на изгиб прогнётся.
Тебе хотят объяснить, а ты в силу своей безграмотной упертости сопротивляешься.
Не Солнце вращается вокруг земли, а увы Земля.

да я разве спорю
я просто привел пример, что если взять трубу с акуетительным запасом то и ее можно использовать

просто в свое время нужно было перекрыть помещение 8*11
под рукой только труба, сделали, стоит как никак 14 лет и снег на крыше лежит и люди по крыше ходят весной когда снег сбрасывают

Это всё чудесно, так же заправщик в Седельникаво не учёл остаток накопившийся в баллоне, а ориентировался на субъективную оценку ситуации, и всё бы не чё, а баллон занесли в тепло.
И кто виноват…
Всё работает до предела…
Но труба там не конструктивный элемент…

согласен, но из положения как то нужно было выходить
вышли за счет трубы, не разбирать же теперь

по поводу Седельниково, говорить не буду, так как ничего не знаю кто кому и что

Раньше в каждой деревне было газовое хранилище, был газовщик, который привозил баллон, и устанавливал его, так же ежегодно приходил и осматривал как установлено газовое оборудование.
А потом все развалили, и бросили людей на *** и последние лет АДцать этим никто не занимается вообще
Теперь каждый сам покупает, ставит баллоны, плиты и тд и тп
Люди на заправках заправляют баллоны которые не проверялись десятилетиями.
Как по мне виноват тот пидор или кучка пидоров кто развалил эту систему.
Вот было бы центральное газоснабжение, никто бы баллоны не таскал, так нет все в Европу у них же "зима" -5, а тут -40 и еб*тесь граждане с баллонами, хотя живут люди на газе

Колонны по стенам вдоль ямы и швеллера два вдоль ямы с одной на другую сторону. А может даже две всего колонны с т-образным концом, с которого два швеллера на противоположный конец ямы к такой же стойке.

Переделать перекрытие. Добавить вдоль ямы два швелера или двутавры.

10 швеллер пойдет?

Подойдет если концы опереть есть куда. Приварить ‘борта’к яме, если будут мешать пол потом подлить повыше.

10 швеллер пойдет?

10 швеллер не подойдёт, очень слабый, не менее 16, у 16 швеллера на 6 м. нулевой прогиб. Вдоль ямы усиливаешь 16 или 18 швеллером с опиранием в стену, т — образным способом, вверху уже прокомментировали, только без вертикальных опор.

Мне надо метра 3-3,5. Но чтоб стойки только по краям, и ещё сваривать придется где то, целиком не протащить и не поставить

Выбирая профильную трубу для несущих конструкций самостоятельно, заказчик понимает важность точных вычислений параметров и нагрузки. В этой статье мы попробуем разобраться, стоит ли экономить на расчетах.

Профильные трубы для высокой нагрузки

С приходом лета начинается строительный сезон для компаний, владельцев коттеджей, дачных участков. Кто-то строит беседку, теплицу или забор, другие люди перекрывают кровлю или возводят баню. И когда перед заказчиком возникает вопрос о несущих конструкциях, чаще выбор останавливается на профильной трубе из-за низкой стоимости и прочности на изгиб при малом весе.

Читайте также:  Теплоутилизаторы в системах вентиляции

Какая нагрузка действует на профильную трубу

Другой вопрос, как рассчитать размеры профильной трубы так, чтобы обойтись «малой кровью», купить подходящую по нагрузке трубу. Для изготовления перил, оградок, теплиц можно обойтись без расчетов. Но если вы строите навес, кровлю, козырек, без серьезных расчетов нагрузки не обойтись.

Каждый материал сопротивляется воздействию внешних нагрузок, и сталь – не исключение. Когда нагрузка на профильную трубу не превышает допустимых значений, то конструкция согнется, но выдержит нагрузку. Если вес груза убрать, профиль примет исходное положение. В случае превышения допустимых значений нагрузки труба деформируется и остается такой навсегда, либо разрывается в месте сгиба.

Чтобы исключить негативные последствия, при расчете профильной трубы учитывайте:

  1. размеры и сечение (квадратное или прямоугольное);
  2. напряжение конструкции;
  3. прочность стали;
  4. типы возможных нагрузок.

Классификация нагрузок на профильную трубу

Согласно СП 20.13330.2011 по времени действия выделяют следующие типы нагрузок:

  1. постоянные, вес и давление которых не меняется со временем (вес частей здания, грунта и т.д.);
  2. временные длительные (вес лестницы, котлов в коттедже, перегородок из гипсокартона);
  3. кратковременные (снеговые и ветровые, вес людей, мебели, транспорт и т.д.);
  4. особые (землетрясения, взрывы, удар машины и т.д).

К примеру, вы сооружаете навес во дворе участка и используете профильную трубу как несущую конструкцию. Тогда при расчете трубы учитывайте возможные нагрузки:

  1. материал для навеса;
  2. вес снега;
  3. сильный ветер;
  4. возможное столкновение автомобиля с опорой во время неудачной парковки во дворе.

Для этого воспользуйтесь СП 20.13330.2011 «Нагрузки и воздействия». В ней есть карты и правила, необходимые для правильного расчета нагрузки профиля.

Расчетные схемы нагрузки на профильную трубу

Кроме типов и видов нагрузки на профили, при расчете трубы учитываются виды опор и характер распределения нагрузки. Калькулятор рассчитывает, используя только 6 типов расчетных схем.

Максимальные нагрузки на профильную трубу

Некоторые читатели задаются вопросом: «Зачем делать такие сложные расчеты, если мне нужно сварить перила для крыльца». В таких случаях нет необходимости в сложных расчетах с учетом нюансов, так как можно прибегнуть к готовым решениям (таб. 1, 2).

Таблица 1. Нагрузка для профильной трубы квадратного сечения

Размеры профиля, мм Максимальная нагрузка, кг с учетом длины пролета
1 метр 2 метра 3 метра 4 метра 5 метров 6 метров
Труба 40х40х2 709 173 72 35 16 5
Труба 40х40х3 949 231 96 46 21 6
Труба 50х50х2 1165 286 120 61 31 14
Труба 50х50х3 1615 396 167 84 43 19
Труба 60х60х2 1714 422 180 93 50 26
Труба 60х60х3 2393 589 250 129 69 35
Труба 80х80х3 4492 1110 478 252 144 82
Труба 100х100х3 7473 1851 803 430 253 152
Труба 100х100х4 9217 2283 990 529 310 185
Труба 120х120х4 13726 3339 1484 801 478 296
Труба 140х140х4 19062 4736 2069 1125 679 429
Таблица 2. Нагрузка для профильной трубы прямоугольного сечения (рассчитывается по большей стороне)

Размеры профиля, мм Максимальная нагрузка, кг с учетом длины пролета
1 метр 2 метра 3 метра 4 метра 5 метров 6 метров
Труба 50х25х2 684 167 69 34 16 6
Труба 60х40х3 1255 308 130 66 35 17
Труба 80х40х2 1911 471 202 105 58 31
Труба 80х40х3 2672 658 281 146 81 43
Труба 80х60х3 3583 884 380 199 112 62
Труба 100х50х4 5489 1357 585 309 176 101
Труба 120х80х3 7854 1947 846 455 269 164

Пользуясь готовыми расчетами, помните, что в таблицах 2 и 3 указана максимальная нагрузка, от воздействия которой труба согнется, но не сломается. При ликвидации нагрузки (прекращение сильного ветра) профиль вновь обретет первоначальное состояние. Превышение максимальной нагрузки даже на 1 кг ведет к деформации или разрушению конструкции, поэтому покупайте трубу с запасом прочности, в 2 – 3 раза превышающим предельное значение.

Методы расчета нагрузок на профильную трубу

Для расчета нагрузок на профили используются методы:

  1. расчет нагрузки при помощи справочных таблиц;
  2. использование формулы напряжения при изгибе трубы;
  3. определение нагрузки при помощи специального калькулятора.

Как рассчитать нагрузку с помощью справочных таблиц

Этот метод точен и учитывает виды опор, закрепление профиля на опорах и характер нагрузки. Для расчета прогиба профильной трубы с помощью справочных таблиц необходимы следующие данные:

  1. значение момента инерции трубы (I) из таблиц ГОСТ 8639-82 (для квадратных труб) и ГОСТ 8645-68 (для прямоугольных труб);
  2. значение длины пролета (L);
  3. значение нагрузки на трубу (Q);
  4. значение модуля упругости из действующего СНиП.

Эти значения подставляют в нужную формулу, которая зависит от закрепления на опорах и распределения нагрузки. Для каждой расчетной схемы нагрузки формулы прогиба меняются.

Расчет по формуле максимального напряжения при изгибе профильной трубы

Расчет напряжения при изгибе вычисляется при помощи формулы:

где M – изгибающий момент силы, а W – сопротивление.

Согласно закону Гука сила упругости прямо пропорциональна величине деформации. Теперь подставляют значения для нужного профиля. Дальше формула уточняется и дополняется, исходя из характеристик стали для профильной трубы, нагрузки и т.д.

Юлия Петриченко, эксперт

Калькулятор для расчета нагрузки на профильную трубу

Расчет профильной трубы на прогиб – сложный и трудоемкий процесс. Для этого надо внимательно изучить ГОСТы и другие нормативные документы, изучить виды опор и нагрузок на будущую конструкцию, построить схему, добавить запас прочности. Малейшая ошибка при расчетах приведет к печальному финалу. Поэтому, не зная физики и Сопромата, лучше доверить расчеты ответственных конструкций (кровля, каркас) профессионалам. Они помогут провести точные расчеты при меньших затратах.

Если вы решили вопрос расчета нагрузки на профильную трубу, поделитесь опытом и расскажите, для чего вы ее использовали в комментариях!

Комментировать
1 054 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Своими руками
0 комментариев
Adblock
detector