Электромагнитное излучение представлено одноименными волнами, которые приводятся в возбуждение под воздействием различных объектов излучения в виде молекулярных, атомных и заряженных частиц.
Существует несколько его разновидностей:
- Видимый свет . Это излучение, способное восприниматься человеческим зрением. Волновая длина достаточно короткая и варьируется в пределах 380-780 нанометров.
- Инфракрасное . Представляет собой что-то среднее между световым излучением и волнами радио.
- Радиоволны . Отличаются наибольшей длиной и вмещают в себя все разновидности излучения, волны которых характеризуются длиной от полумиллиметра.
- Ультрафиолетовое . Излучение, приносящее вред живому организму.
- Рентгеновское . Производится электронными частицами и нашло широкое применение в медицине.
- Гамма-излучение . Имеет самую короткую длину волн, представляя высокий уровень опасности для человеческого организма.
Устройство
Характеристику любой электромагнитной волны составляют три основных параметра:
- Частота . Выражает количество гребней волны, проходящих в течение одной секунды. Мера измерения -герцы.
- Поляризация . Описывает колебания электромагнитных волн в поперечном направлении. Поляризованным излучение становится при волновых колебаниях, происходящих в одной плоскости. На практике данное явление можно встретить в кинотеатрах на сеансах 3Д. Посредством поляризации в 3Д-очках происходит разделение картинки.
- Длина . Представляет собой расстояние, соединяющее точки электромагнитного излучения, которые колеблются в пределах одной фазы.
Распространение электромагнитного излучения возможно в любой среде, начиная плотным веществом и заканчивая вакуумом. При этом скорость распространения волны в вакуумном пространстве достигает 300 тысяч км в секунду. К примеру звуковые волны, в вакууме не распространяются.
Принцип действия
Электромагнитное излучение имеет энергию, основной характеристикой которой является ее напряженность. Существует постоянное и переменное поле электромагнитных волн.
Первое — характеризуется напряженностью, которая обуславливается силой, оказывающей каталитическое действие на токовый проводник. В качестве единицы напряжения выступает ампер. Переменная разновидность совмещает в себе магнитную и электрическую разновидности магнитных полей, которые расширяются в пространстве в виде волн.
Область распространения включает в себя три зоны:
- Ближнюю – индукционную.
- Промежуточную – интерференционную.
- Дальнюю — волновую.
Свойства
Известно, что для электромагнитных волн характерны определенные свойства, о которых впервые заговорил Максвелл. Эти свойства обуславливаются различиями и зависимостью от параметра длины. Именно в соответствии с этими параметрами волны электромагнитных полей подразделяются на диапазоны, которые, в свою очередь, имеют достаточно условную шкалу, поскольку расположенные рядом частоты накладывают свои свойства друг на друга.
К таковым — относятся:
- Высокая проникающая способность.
- Быстрая скорость растворения в веществе.
- Негативное и благотворное влияние на человека.
Применение и влияние
Свое широкое применение электромагнитное излучение получило только в конце 19-го века, когда активно развивалась радиосвязь, посредством которой стало возможно общение на далеком расстоянии.
В качестве главных электромагнитных источников выступают крупные объекты промышленного масштаба, а также различные электрические линии передач. Помимо этого, рассматриваемый вид излучения получил активное применение в военной сфере. Там они представлены радарами и другими электрическими приборами, имеющих сложное устройство.
В медицинской области для лечения разнообразных болезней применяется инфракрасное излучение. Кроме этого:
- Посредством рентгеновского обследования становится возможным выявление внутренних повреждений в человеческом организме.
- Лазер позволяет проводить операции, которые требуют ювелирной точности и т.п.
Однако, несмотря на перечисленную выше пользу, электромагнитное излучение может спровоцировать возникновение ряда негативных признаков:
- Повышенную усталость.
- Боли в голове.
- Тошнотные позывы и т.п.
Повышенное воздействие определенных видов электромагнитных волн способно привести к повреждениям органов, расположенных внутри, и мозговой центральной нервной системы, что впоследствии чревато психическими расстройствами.
Во избежание столь отрицательных влияний существуют определенные стандарты, которые регулируют безопасность электромагнитного воздействия. Так, для каждого из видов электромагнитного излучения разработаны конкретные документы регулирующего характера в виде гигиенических норм и радиационных стандартов.
Электромагнитное излучение влияет на человеческий организм и остается до конца неизученным, по причине чего рекомендуется свести к минимуму его воздействие.
Достоинства и недостатки
Главным преимуществом ЭМИ является его активное применение в медицинской сфере. Посредством рентгеновского и инфракрасного излучений становится возможным обследование внутренних органов с последующим выявлением возможных заболеваний.
К недостатку же электромагнитного излучения следует отнести негативное воздействие на организм человека в случаях, когда это влияние превышает нормы. По возможности его необходимо избегать. Более того, известен накопительный эффект биологического влияния излучения: чем он длительней, тем более негативнее последствия.
Многолетнее воздействие способно привести к:
- Серьезным сбоям в гормональной системе.
- Злокачественным заболеваниям.
- Болезням крови и т.п.
Особенности
Простым обывателям может быть непонятна схожесть между разными, на первый взгляд, объектами электромагнитного излучения, к примеру:
- Трубка рентгена.
- Печка, от которой исходит тепло.
- Фотопленка.
- Радиоприемник.
- Антенна телевизора.
Первые объекты — электромагнитные источники, вторые — представлены приемниками. Также отличается и влияние определенных видов излучения на живой организм, к примеру:
- Рентген и излучение гамма-частицами провоцируют повреждение тканевых структур и внутренних органов.
- Видимый свет при определенных условиях может негативно повлиять на зрение.
- Инфракрасные лучи могут оказывать чрезмерный нагрев на организм.
- При этом радиоволны практически никак не ощущаются.
Однако перечисленные выше отличия выступают различными аспектами одного явления. Электромагнитное излучение обладает волнами, которые имеют схожую распространительную скорость в пространстве. При этом количество колебаний в течение временной единицы может измеряться в широких диапазонных значениях. Окружающее нас пространство насыщено электромагнитным излучением, которое связано не только с радиоволнами, но и с окружающими телами.
Технический прогресс имеет и обратную сторону. Глобальное использование различной техники, работающей от электричества, стало причиной загрязнения, которому дали название – электромагнитный шум. В этой статье мы рассмотрим природу этого явления, степень его воздействия на организм человека и меры защиты.
Содержание
Что это такое и источники излучения
Электромагнитное излучение — это электромагнитные волны, которые возникают при возмущении магнитного или электрического поля. Современная физика трактует этот процесс в рамках теории корпускулярно-волнового дуализма. То есть, минимальной порцией электромагнитного излучения является квант, но в тоже время оно имеет частотно-волновые свойства, определяющие его основные характеристики.
Спектр частот излучения электромагнитного поля, позволяет классифицировать его на следующие виды:
- радиочастотное (к ним относятся радиоволны);
- тепловое (инфракрасное);
- оптическое (то есть, видимое глазом);
- излучение в ультрафиолетовом спектре и жесткое (ионизированное).
Детальную иллюстрацию спектрального диапазона (шкала электромагнитных излучений), можно увидеть на представленном ниже рисунке.
Шкала электромагнитных излучений
Природа источников излучения
В зависимости от происхождения, источники излучения электромагнитных волн в мировой практике принято классифицировать на два вида, а именно:
- возмущения электромагнитного поля искусственного происхождения;
- излучение, исходящее от естественных источников.
Излучения, исходящие от магнитного поля поле вокруг Земли, электрических процессов в атмосфере нашей планеты, ядерного синтеза в недрах солнца — все они естественного происхождения.
Что касается искусственных источников, то они побочное явление, вызванное работой различных электрических механизмов и приборов.
Исходящее от них излучение, может быть низкоуровневым и высокоуровневым. От уровней мощности источников полностью зависит степень напряженности излучения электромагнитного поля.
В качестве примера источников с высоким уровнем ЭМИ можно привести:
- ЛЭП, как правило, высоковольтные;
- все виды электротранспорта, а также сопутствующая ему инфраструктура;
- теле- и радиовышки, а также станции передвижной и мобильной связи;
- установки для преобразования напряжения электрической сети (в частности, волны исходящие от трансформатора или распределяющей подстанции);
- лифты и другие виды подъемного оборудования, где используется электромеханическая силовая установка.
К типичным источникам, излучающим низкоуровневые излучения можно отнести следующее электрооборудование:
- практически все устройства с ЭЛТ дисплеем (например: платежный терминал или компьютер);
- различные типы бытовой техники, начиная от утюгов и заканчивая климатическими системами;
- инженерные системы, обеспечивающие подачу электричества к различным объектам (подразумеваются не только кабель электропередач, а сопутствующее оборудование, например розетки и электросчетчики).
Приборы источники электромагнитного излучения
Отдельно стоит выделить специальное оборудование, используемое в медицине, которое испускает жесткое излучение (рентгеновские аппараты, МРТ и т.д.).
Влияние на человека
В ходе многочисленных исследований радиобиологи пришли к неутешительному выводу – длительное излучение электромагнитных волн может стать причиной «взрыва» болезней, то есть оно вызывает бурное развитие паталогических процессов в организме человека. Причем многие из них вносят нарушения на генетическом уровне.
Видео: Как влияет электромагнитное излучение на людей.
https://www.youtube.com/watch?v=FYWgXyHW93Q
Это происходит из-за того, что у электромагнитного поля высокий уровень биологической активности, что негативно отражается живых организмах. Фактор влияния зависит от следующих составляющих:
- характер производимого излучения;
- как долго и с какой интенсивностью оно продолжается.
Влияние на здоровье человека излучения, у которого электромагнитная природа, напрямую зависит от локализации. Она может быть как местного, так и общего характера. В последнем случае происходит масштабное облучение, например излучение, производимое ЛЭП.
Соответственно, под местным облучением подразумевается воздействие на определенные участки тела. Исходящие от электронных часов или мобильного телефона электромагнитные волны, яркий пример локального воздействия.
Отдельно необходимо отметить термальное воздействие высокочастотного электромагнитного излучения на живую материю. Энергия поля преобразуется в тепловую энергию (за счет вибрации молекул), на этом эффекте основа работа промышленных СВЧ излучателей, используемых для нагрева различных веществ. В отличие от пользы в производственных процессах, термальное воздействие на организм человека может оказаться пагубным. С точки зрения радиобиологии находиться возле «теплого» электрооборудования не рекомендуется.
Необходимо принять во внимание, что в быту мы регулярно подвергаемся облучению, причем это происходит не только на производстве, а и дома или при перемещении по городу. Со временем биологический эффект накапливается и усиливается. С ростом электромагнитного зашумления возрастает количество характерных заболеваний мозга или нервной системы. Заметим, что радиобиология довольно молодая наука, поэтому вред наносимый живым организмам от электромагнитного излучения досконально не изучен.
На рисунке виден, уровень электромагнитных волн, производимых обычными, используемыми в быту приборами.
Уровень электромагнитных волн производимых приборами
Обратите внимание, что уровень напряженности поля существенно снижается на расстоянии. То есть, чтобы уменьшит его действие, достаточно отдалиться от источника на определенное расстояние.
Формула для расчета нормы (нормирование) излучения электромагнитного поля указана в соответствующих ГОСТах и СанПиНах.
Защита от излучения
На производстве в качестве средств, защищающих от облучения, активно применяются поглощающие (защитные) экраны. К сожалению, защититься от излучения электромагнитного поля при помощи такого оборудования в домашних условиях не представляется возможным, поскольку оно на это не рассчитано.
Учитывая исходящую от ЭМИ опасность, советуем придерживаться трех простых рекомендаций.
Рекомендация первая.
Необходимо находиться как можно дальше от источников ЭМИ. Безопасное расстояние зависит от их мощности. Приведем несколько примеров:
- чтобы свести воздействие излучения электромагнитного поля практически к нулю, следует отойти от ЛЭП, радио- и телевышек на расстояние не менее 25 метров (необходимо учитывать мощность источника);
- для ЭЛТ монитора и телевизора это расстояние значительно меньше – около 30 см;
- электронные часы не следует ставить близко подушке, оптимальное расстояние для них более 5 см;
- что касается для радио и сотовых телефонов, подносить их ближе, чем на 2,5 сантиметра не рекомендуется.
Заметим, что многие знают, как опасно стоять рядом с высоковольтными линиями электропередач, но при этом большинство людей не придают значения, обычным бытовым электроприборам. Хотя достаточно поставить системный блок на пол или переместить подальше, и вы обезопасите себя и своих близких. Советуем проделать это, после чего замерять фон от компьютера используя детектор излучения электромагнитного поля, чтобы наглядно убедиться в его снижении.
Этот совет также касается и размещения холодильника, многие ставят его неподалеку от кухонного стола, практично, но небезопасно.
Никакая таблица не сможет указать точное безопасное расстояние от конкретного электрооборудования, поскольку излучения может варьироваться, как в зависимости от модели устройства, так и страны производителя. В настоящий момент нет единого международного стандарта, поэтому в разных странах нормы могут иметь существенные расхождения.
Точно определить интенсивность излучения можно при помощи специального прибора — флюксметра. Согласно принятым в России нормам, максимально допустимая доза не должна превышать 0,2мкТл. Рекомендуем произвести замер в квартире, используя указанный выше прибор для измерения степени излучения электромагнитного поля.
Флюксметр — прибор для измерения степени излучения электромагнитного поля
Вторая рекомендация.
Старайтесь сократить время, когда вы подвергаетесь облучению, то есть, не находитесь долго рядом с работающими электротехническими приборами. Например, совсем не обязательно постоянно стоять у электроплиты или СВЧ-печки во время приготовления пищи. Касательно электрооборудования можно заметить, что теплое, не всегда означает безопасное.
Третья рекомендация.
Всегда выключайте неиспользуемые электроприборы. Люди зачастую оставляют включенными различные устройства, не учитывая, что в это время от электротехники исходит электромагнитное излучение. Выключите ноутбук, принтер или другое оборудование, ненужно лишний раз подвергаться облучению, помните про свою безопасность.
Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию.
Длина волны прямо связана с частотой через (групповую) скорость распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света [1] .
Описанием свойств и параметров электромагнитного излучения в целом занимается электродинамика, хотя свойствами излучения отдельных областей спектра занимаются определенные более специализированные разделы физики (отчасти так сложилось исторически, отчасти обусловлено существенной конкретной спецификой, особенно в отношении взаимодействия излучения разных диапазонов с веществом, отчасти также спецификой прикладных задач). К таким более специализированным разделам относятся оптика (и ее разделы) и радиофизика. Жестким электромагнитным излучением коротковолнового конца спектра занимается физика высоких энергий [2] ; в соответствии с современными представлениями (см. Стандартная модель), при высоких энергиях электродинамика перестает быть самостоятельной, объединяясь в одной теории со слабыми взаимодействиями, а затем — при еще более высоких энергиях — как ожидается — со всеми остальными калибровочными полями.
Существуют различающиеся в деталях и степени общности теории, позволяющие смоделировать и исследовать свойства и проявления электромагнитного излучения. Наиболее фундаментальной [3] из завершенных и проверенных теорий такого рода является квантовая электродинамика, из которой путём тех или иных упрощений можно в принципе получить все перечисленные ниже теории, имеющие широкое применение в своих областях. Для описания относительно низкочастотного электромагнитного излучения в макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла, причём существуют упрощения в прикладных применениях. Для оптического излучения (вплоть до рентгеновского диапазона) применяют оптику (в частности, волновую оптику, когда размеры некоторых частей оптической системы близки к длинам волн; квантовую оптику, когда существенны процессы поглощения, излучения и рассеяния фотонов; геометрическую оптику — предельный случай волновой оптики, когда длиной волны излучения можно пренебречь). Гамма-излучение чаще всего является предметом ядерной физики, с других — медицинских и биологических — позиций изучается воздействие электромагнитного излучения в радиологии. Существует также ряд областей — фундаментальных и прикладных — таких, как астрофизика, фотохимия, биология фотосинтеза и зрительного восприятия, ряд областей спектрального анализа, для которых электромагнитное излучение (чаще всего — определенного диапазона) и его взаимодействие с веществом играют ключевую роль. Все эти области граничат и даже пересекаются с описанными выше разделами физики.
Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:
- наличие трёх взаимно перпендикулярных (в вакууме) векторов: волнового вектора, вектора напряжённости электрического поляE и вектора напряжённости магнитного поляH.
- электромагнитные волны — это поперечные волны, в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том числе и через вакуум.
Диапазоны электромагнитного излучения
Электромагнитное излучение принято делить по частотным диапазонам (см. таблицу). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения (в вакууме) постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.
Название диапазона | Длины волн, λ | Частоты, ν | Источники | |
---|---|---|---|---|
Радиоволны | Сверхдлинные | более 10 км | менее 30 кГц | Атмосферные и магнитосферные явления. Радиосвязь. |
Длинные | 10 км — 1 км | 30 кГц — 300 кГц | ||
Средние | 1 км — 100 м | 300 кГц — 3 МГц | ||
Короткие | 100 м — 10 м | 3 МГц — 30 МГц | ||
Ультракороткие | 10 м — 1 мм | 30 МГц — 300 ГГц [4] | ||
Инфракрасное излучение | 1 мм — 780 нм | 300 ГГц — 429 ТГц | Излучение молекул и атомов при тепловых и электрических воздействиях. | |
Видимое (оптическое) излучение | 780—380 нм | 429 ТГц — 750 ТГц | ||
Ультрафиолетовое | 380 — 10 нм | 7,5·10 14 Гц — 3·10 16 Гц | Излучение атомов под воздействием ускоренных электронов. | |
Рентгеновские | 10 нм — 5 пм | 3·10 16 — 6·10 19 Гц | Атомные процессы при воздействии ускоренных заряженных частиц. | |
Гамма | менее 5 пм | более 6·10 19 Гц | Ядерные и космические процессы, радиоактивный распад. |
Радиоволны. Ультракороткие радиоволны принято разделять на метровые, дециметровые, сантиметровые, миллиметровые и субмиллиметровые (микрометровые). Волны с длиной λ ( ν > 300 МГц ) принято также называть микроволнами или волнами сверхвысоких частот (СВЧ). Деление радиоволн на диапазоны см. в статьях Радиоизлучение и Диапазон частот.
Ионизирующее электромагнитное излучение. К этой группе традиционно относят рентгеновское и гамма-излучение, хотя, строго говоря, ионизировать атомы может и ультрафиолетовое излучение, и даже видимый свет. Границы областей рентгеновского и гамма-излучения могут быть определены лишь весьма условно. Для общей ориентировки можно принять, что энергия рентгеновских квантов лежит в пределах 20 эВ — 0,1 МэВ , а энергия гамма-квантов — больше 0,1 МэВ . В узком смысле гамма-излучение испускается ядром, а рентгеновское — атомной электронной оболочкой при выбивании электрона с низколежащих орбит, хотя эта классификация неприменима к жёсткому излучению, генерируемому без участия атомов и ядер (например, синхротронному или тормозному излучению).
Радиоволны
Из-за больших значений λ распространение радиоволн можно рассматривать без учёта атомистического строения среды. Исключение составляют только самые короткие радиоволны, примыкающие к инфракрасному участку спектра. В радиодиапазоне слабо сказываются и квантовые свойства излучения, хотя их всё же приходится учитывать, в частности, при описании квантовых генераторов и усилителей сантиметрового и миллиметрового диапазонов, а также молекулярных стандартов частоты и времени, при охлаждении аппаратуры до температур в несколько кельвинов.
Радиоволны возникают при протекании по проводникам переменного тока соответствующей частоты. И наоборот, проходящая в пространстве электромагнитная волна возбуждает в проводнике соответствующий ей переменный ток. Это свойство используется в радиотехнике при конструировании антенн.
Естественным источником волн этого диапазона являются грозы. Считается, что они же являются источником стоячих электромагнитных волн Шумана.