Усилительный режим транзистора определяется постоянными напряжениями между электродами и токами, протекающими в цепях электродов. Их задают элементы внешних цепей транзистора, которые составляют схему его включения. Усилительный прибор, его обвязка, источник питания и нагрузка образуют усилительный каскад.
Рис.20 Схема усилительного каскада на транзисторе с ОЭ
Обозначения в схеме:
— входное и выходное сопротивления транзистора V1 переменному току без
учёта элементов внешней цепи (обвязки).
— входное и выходное сопротивления усилительного каскада.
RU — сопротивление источника сигнала.
— эквивалентное сопротивление нагрузки каскада переменному току.
RВХ.СЛ — входное сопротивление следующего каскада.
Примечание: Все сопротивления цепей измерены в направлении стрелки при разрыве схемы вдоль пунктирных линий.
Независимо от схемы включения транзистора: с общим эмиттером (ОЭ), общей базой (ОБ) или общим коллектором (ОК) назначение элементов усилительного каскада одинаково.
Рассмотрим назначения элементов стандартной обвязки транзистора включённого с общим эмиттером (ОЭ) в типовой схеме усилительного каскада (Рис.20).
Развязывающий фильтр по питанию Rф Сф.
При питании усилителя от выпрямителя фильтр по питанию RфСФ обеспечивает сглаживание пульсаций выпрямленного напряжения электрической сети ЕК.
Но более важную роль он выполняет в многокаскадном усилителе при развязке (устранение связей) каскадов, которые питаются от общей шины ЕК. Если внутреннее сопротивление источника питания Ri(Рис.21) отличное от нуля и составляет единицы или даже доли Омма, то переменные токи оконечных каскадов усилителя мощности достигающие единиц Ампер образуют на нём падения напряжения ΔU = IВЫХ Ri. Это значит, что напряжение питания предварительных каскадов и особенно чувствительного входного каскада U = EK — ΔU не будет постоянным. Оно изменяется пропорционально сигналу за счёт паразитной обратной связи между каскадами.
Развязывающие фильтры по питаниюRф Сф с большой постоянной времени в каждом каскаде устраняют паразитные связи между этими каскадами.
Рис.21 Схема образование паразитных связей между каскадами.
Сопротивление резистора RФ выбирается из расчёта допустимого снижения к.п.д. усилителя и лежит в пределах от долей Ома в оконечных каскадах до единиц кОм в маломощных каскадах, так чтобы ΔU = (0,1…0,2) EK. Тогда ёмкость конденсатора СФ для звуковых частот может достигать десятки и сотни мкФ, а для её расчёта можно пользоваться приближённой формулой
Базовый делитель RБ1 RБ2.
Два резистора RБ1 и RБ2, включённых последовательно по постоянному току между шиной питания EK и общим проводом, являются базовым делителем напряжения питания и образуют начальное базовое смещение U0Б = UБ – UЭ между базой и эмиттером транзистора V1. Это напряжение U0б определяет режим работы транзистора: А, В или АВ.
Чем меньше сопротивления резисторов RБ1 RБ2 тем выше температурная стабильность каскада, но при этом недопустимо снижается входное сопротивление каскада по переменному току RВХ
(входное сопротивление транзистора) включены параллельно.
Поэтому типовыми значениями номиналов резисторов базового делителя для каскадов предварительного усиления являются: RБ1 – десятки кОм, RБ2 – единицы — десятки кОм.
Сопротивление коллекторной нагрузки RК.
Резистор RК образует путь протекания коллекторного тока покоя I0К, который определяется выбранным режимом работы транзистора V1 (А, В или АВ).
В сильной степени сопротивление коллекторной нагрузки RК влияет на усилительные свойства транзистора, так как от его номинала зависит угол наклона выходной динамической характеристики. Чем больше сопротивление резистора RК (десятки кОм) тем больше коэффициент усиления каскада по напряжению КU и, наоборот, чем меньше RК (сотни Ом) – тем больше коэффициент усиления по току КI.
Максимальное усиление мощности будет при соизмеримых значениях RК и RВЫХ.V
(выходного сопротивления транзистора переменному току).
По переменному току сигнала сопротивление коллекторной нагрузки RК включено параллельно RВЫХ.V
и может привести к недопустимому снижению выходного сопротивления каскада RВЫХ.
Резистор автосмещения RЭ.
Эмиттерный ток транзистора IЭ (как постоянный I0Э так и переменный ImЭ), протекая через резистор RЭ образует на нём падение напряжения UЭ. Это напряжение является напряжением обратной связи UОС, так как связано с входными параметрами транзистора выражением: U0Б = UБ – UЭ,
где UБ – напряжение на базе V1, измеренное по отношению общего провода.
Как будет доказано в последующих темах, отрицательная обратная связь (ООС) противодействует изменению параметров усилительного каскада, обеспечивая стабилизацию его режима, в том числе и температурного.
Например, повышение температуры tºС вызывает увеличение эмиттерного тока I0Э и UЭ, но при этом автоматически уменьшается начальное базовое смещение U0Б = UБ – UЭ, которое подзапирает транзистор и, как следствие, уменьшает эмиттерный ток, компенсируя его зависимость от температуры. Отсюда название RЭ – резистор автосмещения. Таким образом ООС по постоянному току благоприятно сказывается на стабильность режима работы усилительного каскада.
Но за счёт протекания тока сигнала ImЭ через RЭ образуется ООС по переменному току, которая уменьшает, к сожалению, коэффициент усиления каскада. Включив параллельно резистору RЭ конденсатор большой ёмкости СЭ, можно уменьшить эквивалентное сопротивление эмиттерной цепи на несколько порядков для самых низких рабочих частот.
Конденсатор СЭ предназначен для устранения отрицательной обратной связи по переменному току, в результате чего можно избежать снижения коэффициента усиления.
Разделительные конденсаторы СР1СР2
Разделительные конденсаторы СР1 СР2– устраняют связь между каскадами по постоянному току. При их отсутствии режимы работы всех транзисторов гальванически (непосредственно) связанных между собой будут взаимозависимы. Причём, незначительное изменение режима первого транзистора за счёт усилительных свойств приведёт к недопустимому изменению режима последнего.
![]() |
Ёмкость разделительных конденсаторов выбирается из расчёта, чтобы их реактивное сопротивления ХСр самым низким рабочим частотам FН было хотя бы на порядок меньше эквивалентного сопротивления последующих нагрузочных цепей RЭКВ. ХСр = 1 ⁄(2πFН СР) > 1). |
Рис.24 Схема усилительного каскада с ОБ.
Свойство транзисторного усилительного каскада с ОБ противоположные свойствам каскада с ОК. Каскады с включением транзистора по схеме с ОБ в низкочастотных усилителях УНЧ (звуковых частот УЗЧ) практически не используются.
Усилитель колебаний ЗЧ — составная часть каждого современного радиоприемника, радиолы, телевизора или магнитофона. Усилитель является основой радиовещания по проводам, аппаратуры телеуправления, многих измерительных приборов, электронной автоматики и вычислительной техники, кибернетических устройств. Но в этой беседе я буду говорить о немногом: об элементах и работе транзисторных усилителей применительно к очень узкой области радиотехники — для усиления и преобразования электрических колебаний звуковой частоты в звук.
КАСКАДЫ УСИЛИТЕЛЯ
Усилительным каскадом принято называть транзистор с резисторами, конденсаторами и другими деталями, которые обеспечивают ему условия работы как усилителя. Усилитель, который ты делал к детекторному приемнику (см. рис. 92), был однокаскадным. Его транзистор может быть составным (см. рис. 95), но усилитель все равно останется однокаскадным. Но однокаскадный транзисторный усилитель не может обеспечить усиление сигнала звуковой частоты, достаточное для громкого звуковоспроизведения.
Для громкого воспроизведения колебаний звуковой частоты транзисторный усилитель должен быть минимум двух-трехкаскадным. В усилителях, содержащих несколько каскадов, различают каскады предварительного усиления и выходные, или оконечные, каскады. Выходным называют последний каскад усилителя, работающий на телефоны или динамическую головку громкоговорителя, а предварительными — все находящиеся перед ним каскады.
Задача одного или нескольких каскадов предварительного усиления заключается в том, чтобы увеличить напряжение звуковой частоты до значения, необходимого для работы транзистора выходного каскада. От транзистора выходного каскада требуется повышение мощности колебаний звуковой частоты до уровня, необходимого для работы динамической головки.
Для выходных каскадов наиболее простых транзисторных усилителей радиолюбители часто используют маломощные транзисторы, такие же, что и в каскадах предварительного усиления. Объясняется это желанием делать усилители более экономичными, что особенно важно для переносных конструкций с питанием от батарей. Выходная мощность таких усилителей небольшая — от нескольких десятков до 100-150 мВт, но и ее бывает достаточно для работы телефонов или маломощных динамических головок. Если же вопрос экономии энергии источников питания не имеет столь существенного значения, например при питании усилителей от электроосветительной сети, в выходных каскадах используют мощные транзисторы.
Каков принцип работы усилителя, состоящего из нескольких каскадов?
Схему простого транзисторного двухкаскадного усилителя ЗЧ ты видишь на рис. 173. Рассмотри ее внимательно. В первом каскаде усилителя работает транзистор V1, во втором — транзистор V2. Здесь первый каскад является каскадом предварительного усиления, второй — выходным. Между ними — разделительный конденсатор С2. Принцип работы любого из каскадов этого усилителя одинаков и аналогичен знакомому тебе принципу работы однокаскадного усилителя.
Рис. 173. Двухкаскадный усилитель на транзисторах
Разница только в деталях: нагрузкой транзистора V1 первого каскада служит резистор R2, а нагрузкой транзистора V2 выходного каскада — телефоны В1 (или, если выходной сигнал достаточно мощный, головка громкоговорителя). Смещение на базу транзистора первого каскада подается через резистор R1, а на базу транзистора второго каскада — через резистор R3. Оба каскада питаются от общего источника ииль которым может быть батарея гальванических элементов или выпрямитель. Режимы работы транзисторов устанавливают подбором резисторов R1 и R3, что обозначено на схеме звездочками.
Действие усилителя в целом заключается в следующем. Электрический сигнал, поданный через конденсатор С1 на вход первого каскада и усиленный транзистором V1, с нагрузочного резистора R2 через разделительный конденсатор С2 поступает на вход второго каскада. Здесь он усиливается транзистором V2 и телефонами В1, включенными в коллекторную цепь транзистора, преобразуется в звук.
Какова роль конденсатора С1 на входе усилителя? Он выполняет две задачи: свободно пропускает к транзистору переменное напряжение сигнала и предупреждает замыкание базы на эмиттер через источник сигнала. Представь себе, что этого конденсатора во входной цепи нет, а источником усиливаемого сигнала служит электродинамический микрофон с малым внутренним сопротивлением. Что получится? Через малое сопротивление микрофона база транзистора окажется соединенной с эмиттером. Транзистор закроется, так как будет работать без начального напряжения смещения. Он будет открываться только при отрицательных полупериодах напряжения сигнала. А положительные полупериоды, еще больше закрывающие транзистор, будут им «срезаны». В результате транзистор станет искажать усиливаемый сигнал.
Конденсатор С2 связывает каскады усилителя по переменному току. Он должен хорошо пропускать переменную составляющую усиливаемого сигнала и задерживать постоянную составляющую коллекторной цепи транзистора первого каскада. Если вместе с переменной составляющей конденсатор — будет проводить и постоянный ток, режим работы транзистора выходного каскада нарушится и звук станет искаженным или совсем пропадет.
Конденсаторы, выполняющие такие функции, называют конденсаторами связи, переходными или разделительными.
Входные и переходные конденсаторы должны хорошо пропускать всю полосу частот усиливаемого сигнала — от самых низких до самых высоких. Этому требованию отвечают конденсаторы емкостью не менее 5 мкФ. Использование в транзисторных усилителях конденсаторов связи больших емкостей объясняется относительно малыми входными сопротивлениями транзисторов. Конденсатор связи оказывает переменному току емкостное сопротивление, которое будет тем меньшим, чем больше его емкость. И если оно окажется больше входного сопротивления транзистора, на нем будет падать часть напряжения переменного тока, большая, чем на входном сопротивлении транзистора, отчего будет проигрыш в усилении. Емкостное сопротивление конденсатора связи должно быть по крайней мере в 3-5 раз меньше входного сопротивления транзистора. Поэтому-то на входе, а также для связи между транзисторными каскадами ставят конденсаторы больших емкостей. Здесь используют обычно малогабаритные электролитические конденсаторы с обязательным соблюдением полярности их включения.
Таковы наиболее характерные особенности элементов двухкаскадного транзисторного усилителя ЗЧ.
Для закрепления в памяти принципа работы транзисторного двухкаскадного усилителя ЗЧ предлагаю смонтировать, наладить и проверить в действии несколько его вариантов.
Создание связи по переменному току необходимо, чтобы запретить протекание постоянного тока между определенными точками схемы и обеспечить при этом свободное прохождение переменного тока. Электронные компоненты, обеспечивающие связь по переменному току, например конденсаторы или трансформаторы, обычно устанавливаются на входе и выходе усилителя. Таким образом, заданный режим покоя (статический режим) транзистора не влияет на статические режимы предыдущего и последующего каскадов.
В схеме, приведенной на рис. 23.1. конденсатор связывает точки А и В по переменному току, aR – нагрузочный резистор. Для постоянного тока конденсатор действует как разрыв цепи, полностью блокируя протекание постоянного тока между точками А и В. По этой причине конденсатор связи называют блокировочным или разделительным конденсатором.
Удовлетворительное качество связи по переменному току достигается только в том случае, когда реактивное сопротивление Хс конденсатора на рабочей частоте много меньше сопротивления нагрузочного резистора R. Тогда на этом конденсаторе падает (и теряется) очень малая часть напряжения входного сигнала. Например, если Vвх = 100 мВ, то связь по переменному току можно считать удовлетворительной, когда выходное напряжение Vвых = 95 мВ и на разделительном конденсаторе падает 5 мВ (5%). Требуемую емкость разделительного конденсатора определяют два фактора.
1. Сопротивление загрузочного резистора R. Считая, что удовлетворительная связь но переменному току достигается, когда Х с = R /20, для R = 1 кОм получаем Х с = 50 Ом.
Рис. 23.1. Установка разделительного Рис. 23.2. Влияние развязывающего конденсатора. конденсатора.
Указаны потенциалы точки А без развязывающего конденсатора (а) и с развязывающим конденсатором (б).
Предположим, что рабочая частота f = 300 Гц. Поскольку Хc = 1/2πfC1, то
Если сопротивление нагрузочного резистора увеличить до 100 кОм, то Хc= R/20 = 1/20·100 = 5 кОм
Таким образом, если сопротивление нагрузочного резистора увеличить в 100 раз (с 1 кОм до 100 кОм), то емкость разделительного конденсатора можно уменьшить в той же пропорции (с 10 мкФ до 0,1 мкФ).
Вообще, чем больше сопротивление нагрузочного резистора, тем меньше требуемая емкость разделительного конденсатора.
2. Рабочая частота. Возьмем в качестве исходного вышеприведенный пример, где удовлетворительная связь по переменному току достигалась при С = 10 мкФ и R = 1 кОм для f = 300 Гц.
Если теперь рабочую частоту увеличить до 300 кГц, то с учетом условия Хс = R/20 = 50Ом получаем
Таким образом, если рабочую частоту увеличить в 1000 раз (с 300 Гц до 300 кГц), то емкость разделительного конденсатора можно уменьшить в 1000 раз (с 10 мкФ до 0,01 мкФ).
Вообще, при заданном сопротивлении нагрузочного резистора для низких рабочих частот необходимо использовать разделительные конденсаторы большой емкости, и наоборот.
Когда речь идет о рабочем диапазоне частот, емкость разделительного конденсатора определяется наименьшей частотой из этого диапазона. Обращаясь к рассмотренным выше примерам, мы видим, что конденсатор) емкостью 10 мкФ в соответствии с расчетами обеспечивает адекватную связь по неременному току при частоте 300 Гц и тем более при частоте 300 кГц. С другой стороны, конденсатор емкостью 0,1 мкФ обеспечивает адекватную связь при частоте 300 кГц, но непригоден для реализации связи по переменному току при частоте 300 Гц.
Развязка
На рис. 23.2(6) показан конденсатор С. обеспечивающий развязку резистора R. В отсутствие конденсатора (рис- 23.2(^.1) в точке А постоянный потенциал равен 10 В, а переменный потенциал сигнала — 10 мВ. Конденсатор, представляющий собой разрыв цени для постоянного тока, не оказывает никакого влияния на постоянный потенциал точки А, Однако если емкость этого конденсатора такова, что па рабочей частоте его реактивное сопротивление существенно меньше сопротивления резистора R, то конденсатор будет эффективно осуществлять короткое замыкание сигнала переменного тока на землю. Таким образом, потенциал точки А по переменному току будет равен нулю. ёмкость конденсатора С, обеспечивающая удовлетворительную развязку, определяется сопротивлением резистора R и рабочей частотой — но тем же самым формулам, которые использовались для расчета емкости разделительного конденсатора.
Усилитель с ДС-связью
На рис. 23.3 приведена схема усилителя с ДС-связыо, где С> — входной разделительный конденсатор. Емкость этого конденсатора должна быть сравнительно велика в силу низкого входного сопротивления транзистора в схеме с ОЭ (это сопротивление становится еще меньше за счет шунтиро-вания входа, усилителя резистором R^>. Конденсатор С-^ связывает выход усилителя с нагрузкой или следующим каскадом, его емкость сравнима с емкостью конденсатора Ci. Типичные значения емкостей разделитель-ьшх конденсаторов следующие:
10-50 мкФ. 0.01-0,1 мкФ.
для звуковых частот:
Рис. 23.3. Усилитель с RC-связью с
развязывающим конденсатором С3 в цепи эмиттера. Рис. 23.4. Инвертирование (изменение на 180°) фазы сигнала в усилителе с ОЭ.
Развязывающий конденсатор
Отрицательная обратная связь через резистор R4 в усилителе на рис. 23.3, с одной стороны, обеспечивает необходимую стабильность усилителя по постоянному току, а с другой стороны, снижает его коэффициент усиления до очень малой величины (2-3). Снижение коэффициента усиления связано с действием отрицательной обратной связи по переменному току, обусловленной падением напряжения сигнала на резисторе R4. Для устранения этой отрицательной обратной связи по переменному току и одновременного сохранения стабильности по постоянному току применяется эмиттерный развязывающий конденсатор С3.
Типичные значения емкости эмиттерного развязывающего конденсатора того же порядка, что и для разделительного конденсатора.
Усиление
Схема, приведенная на рис. 23.3, является законченной схемой однокаскадного усилителя с ОЭ. При подаче сигнала (например, синусоидальной формы) на вход усилителя этот сигнал передается через конденсатор С1 на базу транзистора. В начале положительного полупериода входного сигнала потенциал базы возрастает относительно потенциала эмиттера, напряжение VBEувеличивается, ток эмиттера Ie, а с ним и ток коллектора Ic, возрастают, в результате уменьшается напряжение на коллекторе Vc. Это означает, что положительному полу периоду входного сигнала соответствует отрицательный полупериод выходного сигнала. С другой стороны, отрицательному полупериоду входного сигнала соответствует положительный полупериод изменения коллекторного напряжения. Таким образом, сигналы на входе и выходе усилителя противофазны, как показано на рис. 23.4. Усиление сигнала происходит в силу того, что очень малый размах напряжения VBEприводит к большому размаху тока транзистора, который, проходя через резисторR3, вызывает большой размах коллекторного напряжения.
Линия нагрузки
Выходные характеристики транзистора дают общее представление о работе транзистора. Для того чтобы получить представление о работе транзистора в конкретной схеме, нужно начертить линию нагрузки. На рис. 23.5 изображены семейство выходных характеристик транзистора, работающего в схеме усилителя на рис. 23.3, и линия нагрузки XY.
Прежде чем проводить линию нагрузки, нужно сначала зафиксировать две точки, попадающие на эту линию. Лучше всего использовать точку Х на оси х, где ток Ic = 0, и точку Y на оси у, где Vc = 0. Через эти две точки проводится прямая линия — линия нагрузки. Предполагается, что Vc = VCE .
Точка X. В этой точке ток транзистора Ic = 0. Транзистор находится в состоянии отсечки. Следовательно, напряжение на коллекторе Vc = VCC.
Рис. 23.5. Линия нагрузки.
Для величин, указанных на рис. 23.3, положение точек Х и Y будет определяться следующими параметрами:
Таким образом, XY — это линия нагрузки для нагрузочного резистора сопротивлением R3 = 3,3 кОм.
При использовании нагрузочного резистора меньшего номинала (2,2 кОм) получаем линию нагрузки ХYa. Положение точки Х не изменяется по сравнению с предыдущим случаем, поскольку напряжение VСС остается тем же самым — 10 В. Для точки Yb получаем Ic = VCC / R3 = 10 В/2,2кОм = 4,55мА.
Нагрузочному резистору более высокого номинала, например 4,9 кОм, соответствует линия нагрузки ХYb с точкой Yb при Ic = 10 В/4, 9 кОм ≈ 2 мА.
Графический анализ
Процесс усиления сигнала осуществляется вдоль линии нагрузки и может быть представлен графически, как показано на рис. 23.6. Точка Q есть статическая рабочая точка, представляющая режим работы усилителя по постоянному току, т. е. в отсутствие сигнала. Рабочая точка задает смещение транзистора в статическом режиме. В рассматриваемом случае смещение определяется следующими величинами:
Рис. 23.6. Графическое представление работы усилителя.
Рис. 23.7. Перегрузка усилителя, приводящая к ограничению выходного сигнала.
При подаче сигнала базовый ток изменяется по синусоиде с амплитудой 20 мкА (от 0 до 40 мкА). Это приводит к изменению коллекторного тока I c с размахом 2,8 мА и изменению коллекторного напряжения с размахом около 9 В.
С одной стороны размах входного сигнала ограничен линией I b = 0, соответствующей отсечке транзистора (точка М на линии нагрузки), а с другой стороны – линией I b = 40 мкА, соответствующей насыщению транзистора (точка N на линии нагрузки). Для рассматриваемого усилителя рабочая точка Q выбирается в середине линии нагрузки. В этом случае при подаче сигнала с амплитудой 20 мкА на базу транзистора базовый ток изменяется в пределах от 0 до 40 мкА, обеспечивая максимальную величину неискаженного выходного сигнала.
Рис. 23.8. Графическое представление работы усилителя с использованием передаточной характеристики.
Любая попытка превышения этой величины входного сигнала приводит к искажению формы выходного сигнала. Это хорошо видно на рис. 23.7, где иллюстрируется случай перегрузки усилителя с результирующим ограничением синусоидального сигнала. Входной и выходной сигналы могут быть также представлены графически с помощью передаточной характеристики транзистора (рис. 23.8). Рабочий диапазон усилителя ограничен линейным участком характеристики передачи, выход за границы этого участка приводит к искажениям.