Отношение площади к периметру

Отношение площади к периметру

Сравним соотношение "периметр-площадь" для нефрактальных (табл. 1) и фрактальных геометрических объектов.

1. Нефрактальные объекты.

Таблица 1. Соотношение "периметр — площадь" в эвклидовой геометрии

2. Фрактальные объекты.

По аналогии с нефрактальными объектами запишем соотношение "периметр-площадь" в виде

Здесь P — периметр; A — площадь; R(д) — параметр, зависящий от масштаба измерения (размера квадратной ячейки); D — фрактальная размерность "береговой" линии (1

Угловой коэффициент прямой, представленной на рис. 15, равен 2/D.

Рис. 3.15. Зависимость "площадь — периметр"

Анализ выражения (3) показывает, что величиной

зависящей от масштаба измерения д, можно пренебречь, так как при достаточно большом масштабе измерения "остров" становится нефрактальным объектом. Действительно, при D=DE=1 и масштабе, при котором с=1, имеем:

Из выражения (4) найдем фрактальную размерность "береговой" линии

График (рис. 15), построенный в двойных логарифмических координатах, отражает условие самоподобия и позволяет найти фрактальную размерность.

Процедура определения фрактальной размерности заключается в покрытии фрактального объекта ? "острова" — квадратной сеткой с размером ячейки д.

В этом случае периметр и площадь фигуры можно определить по формулам

где — число заполненных "береговой" линией ячеек; — число ячеек, покрывающих площадь "острова".

Таким образом, после подсчета и , по формулам (5) и (4) вычисляется фрактальная размерность D.

Для определения фрактальной размерности поверхности используем подход, предложенный Б. Мандельбротом

Соотношение периметр-площадь используют, чтобы характеризовать множество фрактальных объектов, используемых в широком диапазоне научных и технических проблем.

В частности, это соотношение эффективно используется в работах, в которых дается характеристика поверхностей излома стали и методика для определения конкретных поверхностей изломов.

Применительно к инженерным поверхностям подобное соотношение используется редко. В основном при определении фрактальной размерности поверхности применяют метод покрытия. На рис. 16 представлены модели фрактальных поверхностей при разных значениях фрактальной размерности.

Для определения фрактальной размерности поверхности рассмотрим контакт фрактальной поверхности с гладкой.

Читайте также:  Государственная регистрация осуществляется в следующих случаях

В качестве примера возьмем сечение поверхности плоскостью, параллельной срединной плоскости. На рис. 17 представлено такое сечение фрактальной поверхности с DS = 2,6.

Рис. 16. Модели фрактальных поверхностей

Рис. 17. Сечение фрактальной поверхности

Считается, что все "острова" на рис. 17 самоподобны. Тогда для анализа соотношения периметр-площадь выделим характерный "остров" (рис. 18).

Рис. 18. Изображение "острова"

На рис. 19 представлена процедура определения фрактальной размерности клеточным методом.

Рис. 19. К оценке фрактальной размерности: покрытие фрактального объекта сеткой с квадратными ячейками (Paul S. Addison)

На рис. 20 представлен график зависимости "площадь-периметр" в двойных логарифмических координатах, построенный на основании рис. 19.

При этом считаем, что число квадратов пропорционально соответствующим параметрам: площади и периметра

Зависимость числа клеток, покрывающих площадь "острова" NA, от числа клеток, в которых попала "береговая" линия острова NP , построенная в логарифмических координатах при разных размерах стороны квадратной ячейки, оценивается в данном примере уравнением регрессии

Рис. 20. Зависимости "площадь-периметр"

Фрактальная размерность определяется выражением

При исследовании контакта двух фрактальных поверхностей, имеющих свои фрактальные размерности, привлекательным моментом является замена двух фрактальных поверхностей на контакт гладкой поверхности с приведенной фрактальной.

С этой целью используем ранее рассмотренную процедуру. Смоделируем контакт двух поверхностей и определим пятна касания при некотором сближении.

На рис. 21 показана картина контакта двух поверхностей с выделенным для исследования "островом".

Рис. 21. Контакт фрактальных поверхностей

Периметр — это сумма длин всех сторон многоугольника.

  • Для вычисления периметра геометрических фигур используются специальные формулы, где периметр обозначается буквой «P». Название фигуры рекомендуется писать маленькими буквами под знаком «P», чтобы знать чей периметр ты находишь.
  • Периметр измеряется в единицах длины: мм, см, м, км и т.д.

Отличительные особенности прямоугольника

  • Прямоугольник – это четырехугольник.
  • Все параллельные стороны равны
  • Все углы = 90º.
  • Например в повседневной жизни прямоугольник может встречаться в виде — книги, монитора, крышки от стола или двери.
Читайте также:  Лишай у животных симптомы

Как вычислить периметр прямоугольника

Существует 2 способа его нахождения:

  • 1 способ. Складываем все стороны. P = a + а + b + b
  • 2 способ. Сложить ширину и длину, и умножить на 2. P = (a + b) · 2. ИЛИ Р = 2 · а + 2 · b. Стороны прямоугольника, которые лежат друг против друга (противолежащие), называются длиной и шириной.

«a» — длина прямоугольника, более длинная пара его сторон.

«b» — ширина прямоугольника, более короткая пара его сторон.

Пример задачи на подсчет периметра прямоугольника:

Вычислите периметр прямоугольника, есть его ширина равна 3 см., а длина — 6.

Запомни формулы вычисления периметра прямоугольника!

Полупериметр — это сумма одной длины и одной ширины.

  • Полупериметр прямоугольника — когда выполняешь первое действие в скобках – (a+b).
  • Чтобы из полупериметра получить периметр, нужно его увеличить в 2 раза, т.е. умножить на 2.

Как найти площадь прямоугольника

Формула площади прямоугольника S= a*b

Если в условии известна длина одной стороны и длина диагонали, то площадь найти можно, используя в таких задачах, теорему Пифагора, она позволяет найти длину стороны прямоугольного треугольника если известны длины двух других сторон.

  • Теорема Пифагора: a 2 + b 2 = c 2 , где a и b – стороны треугольника, а с – гипотенуза, самая длинная сторона.

Помни!

  1. Все квадраты – прямоугольники, но не все прямоугольники – квадраты. Так как:
    • Прямоугольник — это четырехугольник со всеми прямыми углами.
    • Квадрат — прямоугольник, у которого все стороны равны.
    • Если ты находишь площадь, ответ всегда будет в квадратных единицах (мм 2 , см 2 , м 2 , км 2 и т.д.)

    Можно ли найти площадь из периметра?

    Замечание для любознательных. В случае с прямоугольником, у которого задан периметр, максимальную площадь будет иметь квадрат.

    Задача 1. Найти стороны прямоугольника из площади

    Задача 2. Найти стороны прямоугольника из периметра

    Периметр прямоугольника 26 см, а сумма площадей квадратов, построенных на двух его смежных сторонах, равна 89 кв. см. Найдите стороны прямоугольника.
    Решение.
    Обозначим стороны прямоугольника как x и y.
    Тогда периметр прямоугольника равен:
    2(x+y)=26
    Сумма площадей квадратов построенных на каждой из его сторон (квадратов, соответственно, два и это квадраты ширины и высоты, поскольку стороны смежные) будет равна
    x 2 +y 2 =89
    Решаем полученную систему уравнений. Из первого уравнения выводим, что
    x+y=13
    y=13-y
    Теперь выполняем подстановку во второе уравнение, заменяя x его эквивалентом.
    (13-y) 2 +y 2 =89
    169-26y+y 2 +y 2 -89=0
    2y 2 -26y+80=0
    Решаем полученное квадратное уравнение.
    D=676-640=36
    x1=5
    x2=8
    Теперь примем во внимание, что исходя из того, что x+y=13 (см. выше) при x=5, то y=8 и наоборот, если x=8, то y=5
    Ответ: 5 и 8 см

    Читайте также:  Кун на минитрактор размеры

    Задача 3. Найти площадь прямоугольника из пропорции его сторон

    Найти площадь прямоугольника если его периметр равен 26 см а стороны пропорциональны как 2 к 3.

    Решение.
    Обозначим стороны прямоугольника через коэффициент пропорциональности x.
    Откуда длина одной стороны будет равна 2x, другой — 3х.

    Тогда:
    2(2x+3x)=26
    2x+3x=13
    5x=13
    x=13/5
    Теперь, исходя из полученных данных, определим площадь прямоугольника:
    2x*3x=2*13/5*3*13/5=40,56 см 2

    Задача 4. Изменение длины сторон при сохранении площади прямоугольника

    Длина прямоугольника увеличена на 25%. На сколько процентов надо уменьшить ширину, чтобы его площадь не изменилась?

    Решение.
    Площадь прямоугольника равна
    S = ab

    В нашем случае один из множителей увеличился на 25%, что означает a2 = 1,25a . Таким образом, новая площадь прямоугольника должна быть равна
    S2 = 1,25ab

    Таким образом, для того, чтобы вернуть площадь прямоугольника к начальному значению, то
    S2 = S / 1.25
    S2 = 1,25ab / 1.25

    поскольку новый размер а изменять нельзя, то
    S2 = (1,25a) b / 1.25

    1 / 1,25 = 0,8
    Таким образом, величину второй стороны нужно уменьшить на ( 1 — 0,8 ) * 100% = 20%

    Ответ: ширину нужно уменьшить на 20%.

    Ссылка на основную публикацию
    Adblock detector