No Image

Практическое применение электролиза рафинирование гальванопластика гальваностегия

454 просмотров
22 июля 2021

При прохождении через раствор или расплав электролита электрического тока, на электродах происходит выделение растворенных веществ или иных веществ, являющихся продуктами вторичных реакций на электродах. Этот физико-химический процесс и называется электролизом.

Суть электролиза

В создаваемом электродами электрическом поле, ионы в проводящей жидкости приходят в упорядоченное движение. Отрицательный электрод — это катод, положительный — анод.

К аноду устремляются отрицательные ионы, называемые анионами (ионы гидроксильной группы и кислотные остатки), а к катоду — положительные ионы, называемые катионами (ионы водорода, металлов, аммония и т. д.)

На электродах протекает окислительно-восстановительный процесс: на катоде происходит электрохимическое восстановление частиц (атомов, молекул, катионов), а на аноде — электрохимическое окисление частиц (атомов, молекул, анионов). Реакции диссоциации в электролите — это первичные реакции, а реакции, которые протекают непосредственно на электродах, называются вторичными.

Законы электролиза Фарадея

Разделение реакций электролиза на первичные и вторичные помогло Майклу Фарадею установить законы электролиза:

Первый закон электролиза Фарадея: масса вещества, осаждённого на электроде при электролизе, прямо пропорциональна количеству электричества, переданного на этот электрод. Под количеством электричества имеется в виду электрический заряд, измеряемый, как правило, в кулонах.

Второй закон электролиза Фарадея: для данного количества электричества (электрического заряда) масса химического элемента, осаждённого на электроде, прямо пропорциональна эквивалентной массе элемента. Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество.

m — масса осаждённого на электроде вещества, Q — полный электрический заряд, прошедший через вещество F = 96 485,33(83) Кл·моль−1 — постоянная Фарадея, M — молярная масса вещества (Например, молярная масса воды H2O = 18 г/моль), z — валентное число ионов вещества (число электронов на один ион).

Заметим, что M/z — это эквивалентная масса осаждённого вещества. Для первого закона Фарадея M, F и z являются константами, так что чем больше величина Q, тем больше будет величина m. Для второго закона Фарадея Q, F и z являются константами, так что чем больше величина M/z (эквивалентная масса), тем больше будет величина m.

Электролиз широко применяется сегодня в промышленности и в технике. Например, именно электролиз служит одним из эффективнейших способов промышленного получения водорода, пероксида водорода, диоксида марганца, алюминия, натрия, магния, кальция и прочих веществ. Применяется электролиз для очистки сточных вод, в гальваностегии, в гальванопластике, наконец — в химических источниках тока. Но обо всем по порядку.

Получение чистых металлов из руд путем электролиза

Благодаря электролизу многие металлы извлекается из руд и подвергается дальнейшей переработке. Так, когда руду или обогащенную руду — концентрат — подвергают обработке реагентами, металл переходит в раствор, затем путем электроэкстракции металл выделяют из раствора. Чистый металл выделяется при этом на катоде. Таким путем получают цинк, медь, кадмий.

Электрорафинированию металлы подвергают для устранения примесей и чтобы перевести содержащиеся примеси в удобную для дальнейшей переработки форму. Металл, подлежащий очистке, отливают в виде пластин, и применяют эти пластины в качестве анодов при электролизе.

Когда ток проходит, металл анода растворяется, переходит в виде катионов в раствор, затем катионы разряжаются на катоде, и образуют осадок чистого металла. Примеси анода не растворяются — выпадают анодным шламом, или переходят в электролит, откуда непрерывно или периодически удаляются.

Рассмотрим в качестве примера электрорафинирование меди. Главный компонент раствора — сульфат меди — наиболее распространенная и дешевая соль этого металла. Раствор обладает низкой электрической проводимостью. Для ее увеличения в электролит добавляют серную кислоту.

Кроме того, в раствор вводят небольшие количества добавок, способствующих получению компактного осадка металла. Вообще, электролитическому рафинированию подвергают медь, никель, свинец, олово, серебро, золото.

Очистка сточных вод путем электролиза

Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции и электрофлотации). Электрохимический метод очистки — один из наиболее часто применяемых. Для электролиза используют нерастворимые аноды (магнетит, оксид свинца, графит, марганец, которые наносят на титановую основу), или растворимые (алюминий, железо).

Такой метод применяют для выделения из воды токсичных органических и неорганических веществ. К примеру, медные трубы очищают от окалины раствором серной кислоты, и промышленные сточные воды приходится затем очищать путем электролиза с нерастворимым анодом. На катоде выделяется медь, которая снова может использоваться на том же предприятии.

Щелочные сточные воды очищают электролизом от цианистых соединений. С целью ускорения окисления цианидов, повышения электропроводности и экономии электроэнергии, к водам применяют добавку в виде хлорида натрия.

Электролиз проводят с графитовым анодом и стальным катодом. Цианиды разрушаются в ходе электрохимического окисления и хлором, который выделяется на аноде. Результативность такой очистки близка к 100%.

Кроме непосредственно электохимической очистки можно включить в процесс электролиза коагуляцию. Исключив добавки солей, электролиз проводят с растворимыми алюминиевыми или железными анодами. Тогда не только разрушаются загрязнители на аноде, но и растворяется сам анод. Образуются активные дисперсные соединения, которые коагулируют (сгущают) коллоидно-дисперсные загрязнения.

Читайте также:  Схема сборки арматуры сливного бачка

Этот метод эффективен при очистке сточных вод от жиров, нефтепродуктов, красителей, масел, радиоактивных веществ и т. д. Он называется электрокоагуляцией.

Гальваностегия

Гальваностегия — это электролитическое нанесение определенных металлов с целью защиты изделий от коррозии и для придания им соответствующего эстетического оформления (покрытие производят хромом, никелем, серебром, золотом, платиной и т. п.). Вещь тщательно очищают, обезжиривают, и используют как катод в электролитической ванне, в которую налит раствор соли того металла, которым необходимо покрыть изделие.

В качестве анода применяют пластину из этого же металла. Как правило применяют пару анодных пластин, а подлежащий гальваностегии предмет располагают между ними.

Гальванопластика

Гальванопластика — осаждение металла на поверхности разных тел для воспроизведения их формы: формы для отливки деталей, скульптур, печатных клише и т.д.

Гальваническое осаждение металла на поверхности предмета возможно лишь тогда, когда поверхность эта или весь предмет являются проводниками электрического тока, поэтому для изготовления моделей или форм желательно использовать металлы. Наиболее подходят для этой цели легкоплавкие металлы: свинец, олово, припои, сплав Вуда.

Эти металлы мягки, легко обрабатываются слесарным инструментом, хорошо гравируются и отливаются. После наращивания гальванического слоя и отделки металл формы выплавляют из готового изделия.

Однако наибольшие возможности для изготовления моделей все же представляют диэлектрические материалы. Чтобы металлизировать такие модели, нужно придать их поверхности электропроводность. Успех или неудача в конечном итоге зависят в основном от качества токопроводящего слоя. Слой этот может быть нанесен одним из трех способов.

Самый распространенный способ — графитирование, он пригоден для моделей из пластилина и других материалов, допускающих растирание графита по поверхности.

Следующий прием — бронзирование, способ хорош для моделей относительно сложной формы, для разных материалов, однако за счет толщины бронзового слоя несколько искажается передача мелких деталей.

И, наконец, серебрение, пригодное во всех случаях, но особенно незаменимое для хрупких моделей с очень сложной формой — растений, насекомых и т. п.

Химические источники тока

Также электролиз является основным процессом, благодаря которому функционируют самые современные химические источники тока, например батарейки и аккумуляторы. Здесь присутствуют два электрода, контактирующие с электролитом.

Между электродами устанавливается разность потенциалов — электродвижущая сила, соответствующая свободной энергии окислительно-восстановительной реакции. Подробнее смотрите здесь: Химические источники электрического тока

Лимонная батарейка (для увеличения нажмите нажмите на картинку)

Действие химических источников тока основано на протекании при замкнутой внешней цепи пространственно-разделённых процессов: на отрицательном аноде восстановитель окисляется, образующиеся свободные электроны переходят по внешней цепи к положительному катоду, создавая разрядный ток, где они участвуют в реакции восстановления окислителя. Таким образом, поток отрицательно заряженных электронов по внешней цепи идет от анода к катоду, то есть от отрицательного электрода к положительному.

Доклад ученицы 10 кл. "Б"

Масоловой Елены по теме:

Электролиз — это окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через раствор или расплав электролитов.

Для осуществления электролиза к отрицательному полюсу внешнего источника постоянного тока присоединяют катод , а к положительному полюсу — анод , после чего погружают их в электролизер с раствором или расплавом электролита.

Электроды, как правило, бывают металлические, но применяются и неметаллические, например графитовые (проводящие ток).

На поверхности электрода, подключенного к отрицательному полюсу источника постоянного тока (катоде), ионы, молекулы или атомы присоединяют электроны, т. е. протекает реакция электрохимического восстановления. На положительном электроде (аноде) происходит отдача электронов, т. е. реакция окисления. Таким образом, сущность электролиза состоит в том, что на катоде происходит процесс восстановления, а на аноде — процесс окисления.

В результате электролиза на электродах (катоде и аноде) выделяются соответствующие продукты восстановления и окисления, которые в зависимости от условий могут вступать в реакции с растворителем, материалом электрода и т. п., — так называемые вторичные процессы.

Металлические аноды могут быть: а) нерастворимыми или инертными (Pt, Au, Ir, графит или уголь и др.), при электролизе они служат лишь передатчиками электронов; б) растворимыми (активными); при электролизе они окисляются.

В растворах и расплавах различных электролитов имеются разноименные по знаку ионы, т. е. катионы и анионы , которые находятся в хаотическом движении. Но если в такой расплав электролита, например расплав хлорида натрия NaCl, опустить электроды и пропускать постоянный электрический ток, то катионы Na + будут двигаться к катоду, а анионы Cl – — к аноду. На катоде электролизера происходит процесс восстановления катионов Na + электронами внешнего источника тока:

На аноде идет процесс окисления анионов хлора, причем отрыв избыточных электронов от Cl – осуществляется за счет энергии внешнего источника тока:

Выделяющиеся электронейтральные атомы хлора соединяются между собой, образуя молекулярный хлор: Cl + Cl = Cl2 , который и выделяется на аноде.

Суммарное уравнение электролиза расплава хлорида натрия:

2NaCl —> 2Na + + 2Cl – — электролиз —> 2Na 0 + Cl2 0

Окислительно-восстановительное действие электрического тока может быть во много раз сильнее действия химических окислителей и восстановителей. Меняя напряжение на электродах, можно создать почти любой силы окислители и восстановители, которыми являются электроды электролитической ванны или электролизера.

Известно, что ни один самый сильный химический окислитель не может отнять у фторид-иона F – его электрон. Но это осуществимо при электролизе, например, расплава соли NaF. В этом случае на катоде (восстановитель) выделяется из ионного состояния металлический натрий или кальций:

на аноде (окислитель) выделяется ион фтора F – , переходя из отрицательного иона в свободное состояние:

F – – e – = F 0 ; F 0 + F 0 = F2 0

-Продукты, выделяющиеся на электродах, могут вступать между собой в химическое взаимодействие, поэтому анодное и катодное пространство разделяют диафрагмой.

Практическое применение электролиза.

Электрохимические процессы широко применяются в различных областях современной техники, в аналитической химии , биохимии и т. д. В химической промышленности электролизом получают хлор и фтор, щелочи, хлораты и перхлораты, надсерную кислоту и персульфаты, химически чистые водород и кислород и т. д. При этом одни вещества получают путем восстановления на катоде (альдегиды, парааминофенол и др.), другие электроокислением на аноде (хлораты, перхлораты, перманганат калия и др.).

Электролиз в гидрометаллургии является одной из стадий переработки металлсодержащего сырья, обеспечивающей получение товарных металлов.
Электролиз может осуществляться с растворимыми анодами — процесс электрорафинирования или с нерастворимыми — процесс электроэкстракции.
Главной задачей при электрорафинировании металлов является обеспечения необходимой чистоты катодного металла при приемлемых энергетических расходах.

В цветной металлургии электролиз используется для извлечения металлов из руд и их очистки . Электролизом расплавленных сред получают алюминий, магний, титан, цирконий, уран, бериллий и др.

Для рафинирования (очистки) металла электролизом из него отливают пластины и помещают их в качестве анодов в электролизер. При пропускании тока металл, подлежащий очистке, подвергается анодному растворению, т. е. переходит в раствор в виде катионов. Затем эти катионы металла разряжаются на катоде, благодаря чему образуется компактный осадок уже чистого металла. Примеси, находящиеся в аноде, либо остаются нерастворимыми, либо переходят в электролит и удаляются.

Гальванотехника – область прикладной электрохимии, занимающаяся процессами нанесения металлических покрытий на поверхность как металлических, так и неметаллических изделий при прохождении постоянного электрического тока через растворы их солей. Гальванотехника пожразделяется на гальваностегию и гальванопластику.

¨ Гальваностегия (от греч. покрывать) – это электроосаждение на поверхность металла другого металла, который прочно связывается (сцепляется) с покрываемым металлом (предметом), служащим катодом электролизера.

Перед покрытием изделия необходимо его поверхность тщательно очистить (обезжирить и протравить), в противном случае металл будет осаждаться неравномерно, а кроме того, сцепление (связь) металла покрытия с поверхностью изделия будет непрочной. Способом гальваностегии можно покрыть деталь тонким слоем золота или серебра, хрома или никеля. С помощью электролиза можно наносить тончайшие металлические покрытия на различных металлических поверхностях. При таком способе нанесения покрытий, деталь используют в качестве катода, помещенного в раствор соли того металла, покрытие из которого необходимо получить. В качестве анода используется пластинка из того же металла.

¨ Гальванопластика – получение путем электролиза точных, легко отделяемых металлических копий относительно значительной толщины с различных как неметаллических, так и металлических предметов, называемых матрицами.

С помощью гальванопластики изготовляют бюсты, статуи и т. д.

Гальванопластика используется для нанесения сравнительно толстых металлических покрытий на другие металлы (например, образование "накладного" слоя никеля, серебра, золота и т. д.).

Название: Применение электролиза
Раздел: Рефераты по химии
Тип: реферат Добавлен 14:51:33 19 марта 2011 Похожие работы
Просмотров: 8023 Комментариев: 35 Оценило: 18 человек Средний балл: 4.3 Оценка: 4 Скачать
Читайте также:  Почему не включается вейп

Кроме указанных выше, электролиз нашел применение и в других областях:

-получение оксидных защитных пленок на металлах (анодирование);

-электрохимическая обработка поверхности металлического изделия (полировка );

-электрохимическое окрашивание металлов (например, меди, латуни, цинка, хрома и др.);

очистка воды – удаление из нее растворимых примесей. В результате получается так называемая мягкая вода (по своим свойствам приближающаяся к дистиллированной);

-электрохимическая заточка режущих инструментов (например, хирургических ножей, бритв и т.д.).

Электролиз нашел широкое применение в технике, например:

1. Покрытие металлов слоем другого металла при помощи электролиза (гальваностегия).

2. Получение копий с предметов при помощи электролиза (гальванопластика).

3. Рафинирование (очистка) металлов.

1. Покрытие металлов слоем другого металла при помощи электролиза (гальваностегия).

Для предохранения металлов от окисления, а также для придания изделиям прочности и лучшего внешнего вида их покрывают тонким слоем благородных металлов (золото, серебро) или мало окисляющимися металлами (хром, никель).

Предмет, предназначенный к гальваническому покрытию, тщательно очищают, полируют и обезжиривают, после чего погружают в качестве катода в гальваническую ванну. Электролитом является раствор соли металла, которым осуществляется покрытие. Анодом служит пластина из того же металла. На фиг. 53 изображена ванна для никелирования. Электролитом служит водный раствор вещества, содержащего никель (например, сернокислый никель NiSO4), катодом является предмет, подвергающийся покрытию. Ток, пропускаемый через ванну, должен соответствовать величине покрываемой поверхности. Обычно при никелировании берут плотность тока, равную 0,4 а/дм2. Для равномерного покрытия предмета его помещают между двумя анодными пластинами. После покрытия предмет вынимают из ванны, сушат и полируют.

2. Получение копий с предметов при помощи электролиза (гальванопластика).

Для получения копий с металлических предметов (монет, медалей, барельефов и т. п.) делают слепки из какого-нибудь пластичного материала (например, воска). Для придания слепку электропроводимости его покрывают графитовой пылью, погружают в ванну в качестве катода и получают на нем слой металла нужной толщины. Затем путем нагревания удаляют воск.

Производство патефонных пластинок (фиг. 54) основано на применении гальванопластики. Восковая пластина с нанесенной на ней записью, опыленная для электропроводимости золотом, погружается в раствор медного купороса в качестве катода. Медный анод поддерживает концентрацию раствора постоянной. Полученный металлический рельефный негативный отпечаток служит для штампования из нагретой щелочной массы большого числа патефонных пластинок.

Гальванопластика применяется во многих отраслях промышленности, в том числе в полиграфии. Процесс гальванопластики был разработан в 1836 г. русским академиком Борисом Семеновичем Якоби (1801—1874). Б. С. Якоби известен своими многочисленными работами в области электротехники. Он является изобретателем первого электродвигателя с непосредственным вращением вала, коллектора для выпрямления тока, стрелочного и электромагнитного пишущих телеграфных аппаратов, а также первого в мире буквопечатающего телеграфного аппарата; им открыто появление обратной э. д. с. при вращении якоря двигателя, впервые (в 1838 г.) осуществлено движение лодки при помощи электрической энергии.

Якоби созданы приборы для измерения электрического сопротивления, изготовлен эталон сопротивления, сконструирован вольтметр.

3. Рафинирование (очистка) металлов.

В электротехнике вследствие хорошей электропроводимости наибольшее применение как проводниковый материал имеет медь. Медные руды, кроме меди, содержат много примесей, как,

например, железо, серу, сурьму, мышьяк, висмут, свинец, фосфор и т. п. Процесс получения меди из руды заключается в следующем. Руду измельчают и обжигают в особых печах, где некоторые примеси выгорают, а медь переходит в окись меди, которую снова плавят в печах вместе с углем. Происходит восстановительный процесс, и получают продукт, называемый черной медью с содержанием меди 98—99%. Медь, идущая на нужды электротехники, должна быть наиболее чистой, так как всякие примеси уменьшают электропроводимость меди. Такая медь получается из черной меди путем рафинирования ее электрический способом

Неочищенная медь подвешивается в качестве анода в ванну с раствором медного купороса (фиг. 55). Катодом служит лист чистой меди. При пропускании через ванну электрического тока медь с анода переходит в раствор, а оттуда осаждается на катод. Электролитическая медь содержит до 99,95% меди. Медь в электротехнике применяется для изготовления голых и изолированных проводов, кабелей сильного и слабого тока, обмоток электрических машин и трансформаторов, медных полос, лент, прутков, коллекторных пластин, деталей машин и аппаратов.

Второе место после меди в электротехнике занимает алюминий. Сырьем для получения алюминия служат бокситы, состоящие из окиси алюминия (до 70%), окиси кремния и окиси железа. В результате обработки бокситов щелочью получается продукт, называемый глиноземом (Аl2Оз).

Глинозем с некоторыми добавлениями (для снижения температуры плавления) загружается в огнеупорную печь, стенки и дно которой выложены угольными пластинами, соединенными с отрицательным полюсом источника напряжения. Через крышку печи проходит угольный стержень, который служит анодом. Сначала опускают угольный анод, в результате чего возникает электрическая дуга, которая расплавляет глинозем. В дальнейшем происходит электролиз расплавленной массы. Чистый алюминий скапливается на дне сосуда, откуда его выливают в формы. Процентное содержание алюминия в металле достигает 99,5%. Для получения алюминия требуется большое количество электроэнергии. Поэтому алюминиевые заводы строятся около больших гидроэлектростанций с дешевой электроэнергией (Волховская ГЭС, Днепрогэс и др.).

Алюминий в электротехнике употребляется для изготовления проводов, кабелей, получения сплавов

Дата добавления: 2015-01-19 ; просмотров: 177 ; Нарушение авторских прав

Читайте также:

  1. I. Рубки лесных насаждений и их применение
  2. II. ХИМИЯ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ, БИОЛОГИЧЕСКАЯ РОЛЬ, ПРИМЕНЕНИЕ В ВЕТЕРИНАРИИ
  3. IV. Применение переместительного закона умножения.
  4. А. Повторное применение лекарственных веществ
  5. Адреномиметические средства прямого действия. Классификация. Механизм действия. Фармакологическая характеристика отдельных препаратов. Применение.
  6. Архитектура и пластика.Пирамиды.
  7. Билет № 14. Применение эластичности в микроанализе
  8. Биологическая роль катионов второй аналитической группы. Применение соединений катионов второй аналитической группы в медицине
  9. Биологическая роль катионов первой аналитической группы. Применение соединений катионов первой аналитической группы в медицине
  10. Биологическая роль катионов пятой аналитической группы. Применение соединений катионов пятой группы в медицине
Комментировать
454 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Своими руками
0 комментариев
Adblock
detector