Способы ограничения пускового тока

Способы ограничения пускового тока

Прямое включение асинхронного двигателя в сеть

Включение двигателя при пониженном напряжении питающей сети позволяет уменьшить пусковой ток, потребляемый двигателем

Введение сопротивления в цепь ротора позволяет, с одной стороны. ограничить пусковой ток двигателя, а с другой стороны — повысить пусковой момент.

— при последовательном включении индуктивного сопротивления

— при включении двигателя через автотрансформатор.

77 Какое соотношение токов и моментов имеет место при пуске АД переключение co «звезды» на «треугольник»?

Часто двигатель пускают в ход посредством переключения обмотки статора со звезды на треугольник (изо). В момент пуска обмотку статора соединяют звездой, а после того как двигатель разовьет частоту вращения, близкую к нормальной, ее переключают треугольником.
При таком способе пуска двигателя в ход пусковой ток в сети уменьшается в три раза по сравнению с пусковым током, который потреблялся бы двигателем, если бы при пуске обмотка статора была соединена треугольником.

Пуск переключением «звезда — треугольник» может применяться в случаях, когда выведены все шесть концов обмотки статора и двигатель нормально работает с соединением обмотки статора в треугольник, например, когда двигатель на 380/220 ви с соединением обмоток Y/A работает от сети 220 в.В этом случае при пуске обмотка статора включается в звезду (, а при достижении нормальной скорости вращения переключается в треугольник.При таком способе пуска по сравнению с прямым пуском при соединении обмотки в треугольник напряжение фаз обмоток уменьшается, пусковой момент уменьшается, пусковой ток в фазах обмотки уменьшается.

78 Поясните, как выбирается сопротивление в цепи статора АД при пуске через ак­тивное сопротивление?

Пусковые сопротивления в статоре (рис.2.1) — активные (r1доб) или реактивных (x1доб) в конце периода пуска закорачиваются контактами К после уменьшения пускового тока Iпи до допустимых значений.

Добавочные сопротивление в статоре рассчитываются по заданной кратности снижения пускового тока(а):

где Iпе и Iпи — пусковые токи на естественной и искусственной пусковых характеристиках соответственно. Полные пусковые сопротивления на естественной (Z1e) и искусственной (Z1u) характеристиках равны:

. (2.2 )

Величины и рассчитываются по формулам :

; (2.3 )

. (2.4 )

Для токоограничения в статор АД включаются либо активные (r1доб), либо реактивные (x1доб) добавочные сопротивления. Поэтому в соотношении (2.4 ) надо принимать либо r1доб, либо x1доб. В соответствии с этим совмеcтное решение (2.2) (2.4) дает следующие результаты:

При включении активного добавочного сопротивления:

. (2.5)

При включении реактивного добавочного сопротивления:

. (2.6)

Обычно величина a принимается в пределах a=2-4

Для двигателей мощностью до 50 кВт используют для токоограничения r1доб, а для больших мощностей (в этом случае меньше потери в пусковых устройствах).

Владельцы патента RU 2253179:

Изобретение относится к силовой электронике. Технический результат заключается в формировании реактивной составляющей тока компенсатора. Для этого способ состоит в компенсации реактивной составляющей этого тока с помощью параллельно подключенного компенсационного преобразователя, выполненного по трехфазной мостовой схеме на двухоперационных вентилях с накопительным дросселем в качестве нагрузки. Полагается, что управление вентилями моста осуществляется вертикальным методом с двукратным включением на каждом периоде сети, обеспечивающим двухкоординатное независимое регулирование величины тока преобразователя и его фазового сдвига относительно напряжения. Для осуществления пропорционального регулирования указанными координатами получены математические выражения характеристик функционального построителя на входе системы импульсно-фазового управления вентилями. 2 ил.

Изобретение относится к силовой электронике, в частности к полупроводниковым компенсаторам реактивной мощности, одно из применений которых может состоять в уменьшении сетевого тока при пуске асинхронных короткозамкнутых электродвигателей путем исключения из состава этого тока реактивной составляющей.

Известно, что прямой пуск асинхронных двигателей (АД) сопровождается кратковременным броском тока статорных обмоток, многократно превышающим номинальный уровень. Данная особенность создает значительные трудности эксплуатации АД, так как приводит к просадкам сетевого напряжения, нарушающим нормальный режим энергоснабжения привода и других потребителей электроэнергии. Ограничение пускового тока АД тривиальными методами в большинстве случаев неприемлемо, так как происходящее уменьшение активной составляющей тока статорных обмоток ведет к уменьшению пускового момента, перегрузочной способности, энергетических показателей и быстродействия привода. В этих условиях едва ли не единственную возможность уменьшения сетевого тока на входе АД предоставляет метод параллельной компенсации реактивной мощности, суть которого, как известно, состоит в том, что потребность двигателя в реактивной мощности обеспечивается не сетью, а параллельно подключенным компенсатором, что ведет к уменьшению полного тока сети, то есть к разгрузке сети от реактивной составляющей тока АД. Получившие известность пускокомпенсирующие устройства асинхронных электроприводов выполняются на основе дискретно переключаемых конденсаторных батарей (см., например, Джендубаев А.З-Р. "Конденсаторное ограничение пускового тока асинхронного короткозамкнутого двигателя." — Известия РАН. Энергетика, №5, 2001 г., с.144-149).

Однако использование устройств подобного рода в динамических режимах затруднено в связи с невозможностью плавного регулирования реактивной мощности. Попытки проведения с их помощью так называемого многоступенчатого пуска АД сопровождаются, как отмечено в указанной работе, появлением резонансных режимов, перенапряжений и т.п. В этой связи более эффективными могут оказаться управляемые полупроводниковые компенсаторы, из общего числа которых наиболее энергоемкими и простыми следует признать компенсационные преобразователи (КП). Данные устройства выполняются, как правило, по трехфазной мостовой схеме выпрямления, которая зажимами переменного тока присоединяется к статорным обмоткам АД, а в цепи постоянного тока содержит индуктивный элемент в виде накопительного дросселя. Элементной базой данных преобразователей служат двухоперационные вентили, например транзисторные IGВТ-модули с последовательно соединенными для блокирования обратного напряжения диодами. Включение двухоперационных вентилей в диапазоне опережающих углов управления α ≤ 0 приводит к появлению на сетевом входе КП реактивного тока емкостного характера прямоугольной формы, основная гармоника которого имеет опережающий фазовый сдвиг относительно сетевого напряжения ϕ 1≤ 0. Действующее значение реактивной составляющей этого тока IКР отыскивается в виде произведения двух координат: iК1 — действующего значения основной гармоники тока и sinϕ 1 — фазового параметра, тригонометрически зависящего от фазового сдвига основной гармоники тока относительно напряжения, согласно выражению

Задача параллельной компенсации состоит в формировании реактивной составляющей тока компенсатора, которая бы при равенстве амплитуд находилась в противофазе к реактивной составляющей тока статорных обмоток АД

что может быть достигнуто методом автоматического управления указанными координатами, обеспечивающим раздельное поддержание равенств

Однако при обычном импульсно-фазовом управлении вентилями подобное двухкоординатное регулирование невозможно, так как при изменении угла управления α одновременно изменяются оба указанных токовых параметра. Кроме того, режим короткого замыкания, в котором фактически работает компенсационный выпрямитель, существенно ограничивает диапазон возможного отклонения угла управления от его начального значения α =-π /2. Возможность раздельного независимого регулирования тока и его фазы на сетевом входе КП в широком диапазоне появляется при двукратном включении вентилей за период сетевого напряжения (см., например, А.С. №436430). Наиболее близкое техническое решение содержится в изобретении (см. "Способ управления мощностью на сетевом входе трехфазного вентильного преобразователя."// С.Н.Сидоров. Патент РФ №2167484. Опубл. в БИ №14, 2001 г.). Данный способ обеспечивает автономное пропорциональное регулирование активной и реактивной составляющих тока на сетевом входе трехфазного мостового преобразователя при двукратном включении каждой пары вентилей моста на периоде сети, когда первое включение осуществляется с отстающим относительно начала положительной полуволны сетевого линейного напряжения углом управления а второе включение — с опережающим относительно указанного момента углом управления, по модулю равным и одновременным запиранием ранее работающих вентилей, на основе вертикального принципа путем включения вентилей в моменты равенства управляющих сигналов: — при первом включении и — при втором включении и периодически изменяющихся синхронно с сетью опорных сигналов косинусоидальной формы с вершинами, совпадающими с указанными точками отсчета углов управления.

Читайте также:  Разводка канализационных труб в частном доме

Как отмечалось в (3), для решения задачи компенсации линейными методами теории автоматического регулирования необходимо иметь возможность пропорционального регулирования величины тока и его фазового параметра на выходе компенсатора. Для этого предлагается использовать задающие сигналы, относительные значения которых пропорциональны указанным координатам: — сигнал задания амплитудного значения тока компенсатора, — сигнал задания фазы тока компенсатора. Для получения пропорциональной зависимости между задающими сигналами и указанными координатами реактивного тока компенсатора данные сигналы должны быть поданы на входы функционального построителя (ФП), на выходах которого формируются сигналы управления первым и вторым включениями вентиля на периоде сети. Точные уравнения характеристик "вход-выход" ФП имеют следующий вид:

Данные исходные зависимости достаточно сложны, поэтому на практике их можно аппроксимировать, а графики характеристик ФП подвергнуть интерполяции, что упростит реализацию ФП аппаратным или программным способом.

На фиг.1 представлены временные диаграммы выпрямленного напряжения Ud(v), а также напряжения Ua(v) и тока ia(v) фазы А на сетевом входе компенсационного преобразователя, иллюстрирующие его работу с двукратным включением каждой пары вентилей моста на периоде сетевого напряжения; на фиг.2 изображена схема устройства ограничения пускового тока АД.

При рассмотрении принципа работы устройства будем исходить из преодположения, что напряжение в сети сохраняет синусоидальную форму, а в цепи нагрузки КП протекает идеально сглаженный выпрямленный ток >

Согласно диаграммам фиг.1, работа КП при выбранном способе управления сопровождается чередованием следующих пар включаемых вентилей на периоде сети: 1,6; 4,3; 1,2; 5,4; 3,2; 5,6; 3,4; 1,6; 5,4; 1,2; 5,6; 3,2. Видно, что работа каждой пары происходит на периоде дважды, например включение вентилей 1, 2 происходит первый раз в момент v1 с отстающим относительно начала положительной полуволны линейного напряжения Uac на их анодах (относительно точки естественной коммутации вентиля 1 фазы А) углом управления α 1≥ 0, а второй раз в момент v2 — с опережающим относительно указанной точки углом управления α 2≤ 0. При этом выпрямленное напряжение на каждом периоде пульсаций π /3 формируется из участков противофазных линейных напряжений сети Uac Uca, кратковременно переводящих преобразователь из выпрямительного режима в инверторный и наоборот. На этом же чертеже изображены кривые напряжения Ua(v) и тока ia(v) фазы А на сетевом входе моста. Можно видеть, что соответствующим изменением углов управления α 1, α 2 можно осуществлять независимое регулирование средневыпрямленного напряжения, а значит, и тока на сетевом входе преобразователя — с одной стороны, а также фазового сдвига ϕ 1 основной гармоники фазного тока ia1(v) относительно фазного напряжения Ua(v) — с другой стороны. Последнее означает возможность автономного двухкоординатного управления реактивным током компенсационного преобразователя, существенно расширяющим диапазон его плавного регулирования за счет амплитуды или фазового сдвига.

Представленные диаграммы тока помогают получить аналитические зависимости для организации двухкоординатного импульсно-фазового регулирования КП. Осуществляя разложение кривой тока ia(v) в ряд Фурье, запишем выражения для косинусного и синусного коэффициентов при первом слагаемом ряда

Выражения представлены в системе относительных единиц с базовым значением что дает возможность записать расчетные зависимости для действующего значения основной гармоники тока на сетевом входе КП

фазового сдвига этой гармоники относительно сетевого фазного напряжения

а также активной и реактивной составляющих этого тока

После подстановки (6) в (7), (8), (9) реактивная и активная составляющие фазного тока на сетевом входе КП выразятся

Вводя понятия задающих сигналов для осуществления пропорционального регулирования тока на сетевом входе КП и его фазового параметра

запишем закон автономного двухкоординатного регулирования компенсационным преобразователе в следующем виде:

Решая данную систему относительно одной из тригонометрических функций, получим

Данное уравнение позволяет, задаваясь величинами найти требуемый угол управления вентилями α 1 при каждом первом включении на периоде сети. Практическая реализация импульсно-фазового управления вентилями осуществляется, как правило, на основе так называемого вертикального принципа. Рассматривая выражение (12) как уравнение точки встречи двух сигналов: управляющего сигнала и представленного слева опорного периодического сигнала косинусоидальной формы с вершиной косинусоиды, совпадающей с точкой перехода вступающего в работу линейного напряжения сети через нуль, запишем уравнение регулировочной характеристики системы импульсно-фазового управления вентилями относительно первого входа

Аналогичным образом отыскивается уравнение точки встречи управляющего и опорного сигналов при втором включении вентилей на периоде

Принимая правую часть (14) за управляющий сигнал на втором входе системы импульсно-фазового управления а левую часть — в качестве периодического опорного сигнала косинусоидальной формы, выражение регулировочной характеристики этой системы относительно второго управляющего входа запишется

Изображенный на фиг.2 компенсационный преобразователь выполнен по трехфазной мостовой схеме выпрямления на транзисторных ключах 1-6, которая зажимами переменного тока подключена в параллель статорным обмоткам асинхронного двигателя 7, а в цепи постоянного тока содержит накопительный дроссель 8. Устройство управления содержит блок задания 9, который на основе информации о токе статорных обмоток АД вырабатывает входные сигналы, а также блок обратных связей 10, аналогичным образом согласно (9) вырабатывающий сигналы, пропорциональные параметрам тока на сетевом входе КП. Полученные в результате сравнения входных сигналов и сигналов обратных связей задающие сигналы поступают на вход функционального построителя 11. На выходах функционального построителя формируются согласно выражениям (4), (5) управляющие сигналы которые подаются далее на первый и второй входы системы импульсно-фазового управления 12. При надлежащем выполнении и настройке данное устройство может служить для ограничения пускового тока АД в соответствии с предлагаемым техническим решением.

Читайте также:  Современный утеплитель для кровли

Способ ограничения пускового тока асинхронного двигателя путем компенсации реактивной составляющей этого тока с помощью параллельно подключенного к статорным обмоткам компенсационного преобразователя, выполненного по трехфазной мостовой схеме выпрямления с применением двухоперационных вентилей с накопительным дросселем в цепи нагрузки при управлении с двухкратным включением каждой пары вентилей моста на периоде сети, когда первое включение осуществляют с отстающим относительно начала положительной полуволны линейного напряжения углом управления а второе включение — с опережающим относительно указанного момента углом управления, по модулю равным и одновременным запиранием ранее работавших вентилей, на основе вертикального принципа путем включения вентилей в моменты равенства управляющих сигналов и периодически изменяющихся синхронно с сетевым напряжением опорных сигналов косинусоидальной формы с вершинами, совпадающими с указанными точками отсчета углов управления, при условии сохранения синусоидальности сетевого напряжения и сглаженной формы тока на выходе компенсационного преобразователя, отличающийся тем, что, формирование реактивной составляющей основной гармоники тока на сетевом входе компенсационного преобразователя в противофазе к реактивной составляющей тока статорных обмоток двигателя осуществляют с помощью двух задающих сигналов на входе функционального построителя, один из которых пропорционален действующему значению основной гармоники фазного тока компенсационного преобразователя а другой пропорционален синусу фазового угла между указанной гармоникой тока и сетевым напряжением при этом на выходе функционального построителя получают управляющие сигналы для последующей подачи их на входы системы импульсно-фазового управления вентилями компенсационного преобразователя, следующего вида:

1) Включение добавочных резисторов R в цепь статораведет при данной скорости (скольжении) к снижению токов стато­ра и ротора. Другими словами, все искусственные электромехани­ческие характеристики располагаются в первом квадранте ниже и левее естественной. С учетом того, что скорость идеального холос­того хода ω при включении R не изменяется, получаемые искус­ственные электромеханические характеристики можно представить семейством кривых 2. 4, которые расположены ниже естественной характеристики 1, построенной при R = 0, причем большему зна­чению R соответствует больший наклон искусственных характе­ристик (рис. 5.6, а). Практическая ценность этих характеристик со­стоит в обеспечении возможности ограничения токов АД при пуске.

Для получения искусственных механических характеристик про­анализируем влияние R на координаты их характерных точек.

Скорость холостого хода ω = 2nf1/ p не изменяется при R = var, т.е. все искусственные характеристики проходят через эту точку на оси скорости (скольжения).

Координаты точки экстремума Мк и sk изменяются при варьиро­вании R а именно: при увеличении R критический момент и критическое скольжение уменьшаются. Уменьшается и пусковой момент при s = 1. Проведенный анализ позволяет представить искусственные механические характеристики 2. 4 АД при R = var в виде, показанном на рис. 5.6, б. Такие характеристики могут использо­ваться при необходимости для снижения в переходных процессах момента АД, в том числе и пускового.

2) Реакторный пуск. (схема)

3) Автотрансформаторный пуск. (схема)

4) Пуск короткозамкнутого электродвигателя с переключением обмоток со звезды на треугольник, этот способ применим, когда напряжение сети соответствует меньшему из напряжений, ука­занных в паспорте, то есть когда электродвигатель при данном напря­жении сети должен работать по схеме «треугольник». Например, если в паспорте указаны напряжения 660/380 В, а напряжение сети 380 В, то двигатель должен работать по схеме ∆. В момент же пуска на период разгона его включают по схеме Y. Благодаря этому на каждую из обмоток приходится напряжение не 380 В, а 380/√3 = 220 В. Потребляемый же из сети ток уменьшится при этом в 3 раза (пропорционально квадрату напряжения).

Снижение потребляемого из сети тока в 3 раза приводит к уменьшению развиваемой в момент пуска мощности также в 3 раза, то есть этот способ применим тогда, когда нагрузка на двигатель при пуске не превышает 1/3 PН.

Переключение обмоток электродвигателя со звезды на треугольник осуществляется при помощи специального переключателя типа ЗТ («звезда—треугольник»). В нижнем положении переключателя обмотки электродвигателя включены звездой, так как все три начала (С1, С2, СЗ) замкнуты в общую точку, а к концам подведено напряжение сети. Ножи переключателя держат в нижнем положении до тех пор, пока двигатель полностью не закончит разбег (3. 10 с). Затем ножи быст­ро, не давая ротору потерять частоту вращения, переводят в верхнее положение, соответствующее соединению обмоток статора треуголь­ником.

Схема замещения трехобмоточного трансформатора и определение его параметров.

– справочная величина.

Вакуумно-дуговые и плазменно-дуговые печи, устройство, источники питания, параметрические источники тока.

Вакуумно-дуговые печи используются для получения чистых редкоземельных металлов. Единственный путь полу­чения этих металлов — переплав в вакууме или инертном газе, т.к. при нагреве они растворяют в себе газы и реагируют с другими материалами.

Для плавки губку или порошок формуют в виде круглого или прямоу­гольного электрода. Для исключения соприкосновения с огнеупорным материалом плавка в вакуумной дуговой печи (ВДП) ведется в мед­ной водоохлаждаемом кристаллизаторе 3. Плавку ведут, как правило, на постоянном токе, который подается с помощью токоподвода 11 через шток с электрододержателем 1 на переплавляемый электрод 2. При прохождении тока дуги 12 электрод расплавляется, металл каплями стекает в жидкометаллическую ванну 4. Так как упругость пара примесей выше, чем упругость основного металла, то примеси испаряются и удаляются из печи с помощью вакуумной сис­темы. В ВДП осуществляется глубокое рафинирование металла, глу­бокая дегазация продукта и очистка его от неметаллических вклю­чений. Плавку начинают на металлзатравку 5, которую располагают на поддо­не 6. По мере наплавления слитка 7 система автоматического регу­лирования тока дуги поднимает электрод 2. Для стабилизации го­рения дуги служит соленоид 8, который крепится на кожухе печи 9. Обычно ВДП располагают в от­дельном помещении, а наблюдения за плавкой ведут с помощью пери­скопической системы через окна-гляделки 10. Это вызвано тем, что при появлении боковой дуги на кристаллизатор она может прожечь последний, на жидкий металл попа­дает вода.
Читайте также:  Мастер класс по изготовлению киндер сюрприза

При этом пар разлага­ется, на кислород и водород, обра­зуя взрывоопасный "гремучий газ". Для исключения появления боковых дуг плавки ведут на коротких ду­гах, длиной 30 — 50 мм.

Плазма — ионизированный газ, состоящий из электронов, ионов и нейтральных частиц. Плазма существует при электрическом разря­де в газе. Однако плазменной дугой принято называть не обычный дуговой разряд, а дополнительно сжатую в поперечном сечении ду­гу. При этом возрастает степень ионизации газа и температура ду­ги, которая достигает 10000 — 30000 °С. Сжатие осуществляется давлением газа или магнитным полем. В качестве плазмообразующих применяются инертные газы: аргон, гелий, а также водород, азот.

Плазменно-дуговой нагрев применяется для следующих электротехнологических процессов: выплавка и переплав металлов, в том числе тугоплавких и химически активных; восстановление металлов из руд; проведение в плазме химических реакций, требующих высо­ких температур (синтез ацетилена из природного газа; пиролиз нефти; получение азота и др.); резка и сварка металлов, сплавов, графита и неэлектроп­роводных материалов; атомарное напыление любых металлов с целью создания за­щитных (антикоррозионных, жаростойких износостойких) покрытий.

Плазму получают в плазмотронах. Различают два типа плазмот­ронов: струйные и плавильные (рис.3.21).

В плавильных плазмотронах (плазмотронах прямого действия) дуга и струя плазмы занимают общий объем, слиты воедино, анодом является переплавленный металл. Дуга и струя плазмы находятся в рабочем пространстве плавильной установки, а не в камере плаз­мотрона, за счет чего повышается его долговечность.

Большинство плазмотронов работают на постоянном токе, что вызвано более стабильным горением дуги. Однако находят примене­ние и однофазные, а также трехфазные плазмотроны. В настоящее время наряду с трехфазными ДСП используются плазменно-дуговые сталеплавильные печи (ПДСП).

Небольшие изменения напряжения на дуге, вызванные, напри­мер, кабельными короткими замыканиями, могут при­вести к резкому изменению тока, а следовательно и мощности дуги. Для по­лучения качественных слитков плавку необходимо вести с постоянной мощностью. Этого можно достичь используя источ­ники, обладающие крутопадаюшей характеристикой источника тока. Работа параметрического источника тока (рис. 3.20, а) основа­на на явлении резонанса напряжений, т.е. Lω= 1/Cω = X.

Для параметрического источника тока (ПИТ) можно составить на основании законов Кирхгофа следующую систему уравнений:

Решение этой системы уравнения относительно тока нагрузки (тока дуги) имеет вид:

Таким образом, в ПИТ ток нагрузки не зависит от параметров нагрузки (величины сопротивления дуги, напряжения на ней) и оп­ределяется сопротивлением резонансных элементов. Этот вывод подтверждает также построение векторных диаграмм ПИТ, которые можно сделать самостоятельно для трех случаев:

a) zH = 0(Rg = 0) — короткое замыкание дуги ;

в) Rg > xl = xc — несимметричная нагрузка.

Построение показывают, что во всех трех случаях ток дуги не изменяется. Из трех однофазных ПИТ, соединенных вместе, получают трехфазный. Электротехнической промышленностью выпускают ПИТ на токи Ig = 12,; 25; 37,5; 50 кА. UH = 75 В.

Кроме ПИТ в качест­ве источников питания ВДП используются мощные выпрямительные агрегаты секции ВАКП, АВП на диодах и выпрямительные агрегаты на тиристорах Т серии ТВ (рис.3.20). Система регулирования тока агрегатов ТВ построена по прин­ципу сравнения фактического и заданного значений токов дуги. При уменьшении тока дуги ниже заданного угол отпирания тиристоров уменьшается, напряжение увеличивается, ток возрастает до задан­ного значения. И наоборот, при увеличении тока выше заданного значения угол отпирания тиристоров увеличивается, напряжение на дуге уменьшается, ток уменьшается. Реакторы P1, P2 предохраняют источник от бросков тока при капельных коротких замыканиях. Па­раметры выпрямительных агрегатов на тиристорах: U1 = 6; 10 кВ; Uпост=75; 115 В; РН = 1000 — 5750 кВт. Точность стабилизации тока + — 1%.

Электромеханические характеристики реверсивного тиристорного привода.

Изменение направления вращения двигателя при использовании нереверсивного привода может быть осуществлено путем переключе­ния полярности либо обмоток якоря, либо обмоток возбуждения. Это связано с временной задержкой при изменении направления враще­ния, вызванной переключением аппаратов и изменением направления тока. Когда токозадержка недопустима, применяется реверсивный привод, позволяющий осуществлять регулирование во всех четырех квадрантах, с высоким быстродействием.

Реверсивный преобразователь состоит из двух нереверсивных, выполненных по одной и той же схеме. По отношению к двигателю они включены встречно-параллельно, а по переменному току подклю­чены к одному и тому же источнику питания. В мощных ус­тановках применяется также перекрестная схема, в которой каждый из преобразователей подключен к отдельной вторичной обмотке си­лового трансформатора.

Существуют два способа управления вентильными блоками ре­версивного преобразователя: совместный и раздельный.

При сов­местном управлении управляющие импульсы подаются на тиристоры обоих комплектов, при этом один из них работает в выпрямительном режиме, а другой в инверторном. При противоположном направлении вращения двигателя комплекты меняются режимами. Совместное управление связано с возникновением уравнитель­ных токов. Уравнительные токи отсутствуют, если напряжения двух источников питания, работающих на общую нагрузку, в любой момент времени равны. Для совместно работающих выпрямителя и инвертора это условие в принципе невыполнимо, поскольку в выпрямителе и инверторе проводят ток вентили разных фаз. Поэтому используется менее жесткое условие: должны быть равны постоянные составляющие напряжений выпрямителя и инвертора: UdBcosαB = — UdBcosαИ, откуда следует: αB + αИ = 180°. Такое управление называется совместным согласованным (ли­нейное согласование). При этом управлении из-за неравенства мгновенных значений в напряжениях выпрямителя и инвертора между ними протекает уравнительный ток. Для уменьшения величины этого тока в силовую цепь включается токоограничиващие (уравнитель­ные) реакторы. Для еще более значительного снижения уравнительного тока применяют нелинейное согласование углов управления, чтобы выпол­нялось условие: Еи > Ев, откуда вытекает αB + αИ > 180°.

Уравнительные токи, вызывая дополнительные потери в преоб­разователе, создают и положительный эффект. Они поддерживают вентили в открытом состоянии независимо от величины тока якоря двигателя. Благодаря этому отсутствует при совместном управлении режим прерывистых токов и характеристики двигателя при переходе из двигательного режима в тормозной становятся непрерывными. При линейном согласовании углов управления механические характерис­тики двигателя прямолинейны (рис.6а). При нелинейном согласова­нии углов управления характеристики имеют нелинейный участок при переходе из двигательного режима в тормозной (рис.6б).

При раздельном управлении всегда работает только один пре­образователь. Поэтому уравнительные токи в принципе отсутствуют. Однако при этом существует режим прерывистых токов, где характе­ристики двигателя нелинейны и разрывны при переходе из двига­тельного в тормозной режим (рис.6в).

Ссылка на основную публикацию
Adblock detector