Ультразвуковой метод технической диагностики

Ультразвуковой метод технической диагностики

Ультразвуковая диагностика в акушерстве

Санкт-Петербург 1997

2. Физические основы ультразвуковой диагностики

3. Биофизика ультразвука

4. Лучевая безопасность ультразвукового исследования

5. Методика УЗИ в акушерстве

6. УЗИ при беременности

8. Список использованной литературы

Современные успехи клинической диагностики во многом определяются совершенствованием методов исследования. Значительный скачек в этом вопросе был достигнут благодаря разработке и внедрению в практику принципиально новых способов получения медицинского изображения, в том числе ультразвукового метода. Чрезвычайно ценным является способность эхографии визуализировать внутреннюю структуру паренхиматозных органов, что было недоступно традиционному рентгенологическому исследованию. Благодаря высокой информативности и достоверности ультразвукового метода диагностика многих заболеваний и повреждений поднялась на качественно новый уровень. В настоящее время, наряду с компьютерной томографией и другими более современными методами, ультразвуковая диагностика используется повсеместно являясь одним из ведущих диагностических методов во многих разделах клинической медицины.

В последние годы в связи с очень широким распространением ультразвуковой аппаратуры, ее доступностью для любых даже очень небольших медицинских учреждений. Назревает потребность в специалистах, в совершенстве владеющих методикой и техникой ультразвукового исследования.

Физические основы ультразвуковой диагностики

Ультразвуком называются звуковые колебания, лежащие выше порога восприятия органа слуха человека. Пьезоэффект, благодаря которому получают ультразвуковые колебания, был открыт в 1881 году братьями П. Кюри и Ж.-П. Кюри. Свое применение он нашел во время первой мировой войны, когда К.В. Шиловский и П. Ланжевен разработали сонар, использовавшийся для навигации судов, определения расстояния для цели и поиска подводных лодок. В 1929 году С.Я. Соколов применил ультразвук для неразрушающего контроля в металлургии (дефектоскопия). Этот крупнейший советский физик-акустик явился родоначальником ультразвуковой интроскопии и автором наиболее часто используемых и совершенно различных по своей сути методов современного звуковидения.

Попытки использования ультразвука в целях медицинской диагностики привели к появлению в 1937 году одномерной эхоэнцефалографии. Однако лишь в начале пятидесятых годов удалось получить ультразвуковое изображение внутренних органов и тканей человека. С этого момента ультразвуковая диагностика стала широко применяться в лучевой диагностике многих заболеваний и повреждений внутренних органов.

С точки зрения физики ультразвука ткани человеческого тела близски по своим свойствам жидкой среде, поэтому давление на них ультразвуковой волны может быть описано как сила, действующая на жидкость.

Изменение давления в среде может происходить перпендикулярно в плоскости вибрации источника ультразвука. В этом случае полну называют продольной. В ультразвуковой диагностики основную информацию несут преимущественно продольные волны. В твердых телах, например, в костях или металлах, возникают поперечные волны.

Звуковые волны являются механическими по своей природе, так как в основе их лежит смещение частиц упругой среды от точки равновесия. Именно за счет упругости и происходит передача звуковой энергии через ткань. Упругость – это возможность объекта после сжатия или растяжения вновь приобретать свой размер и форму. Скорость распространения ультразвука зависит прежде всего от упругости и от плотности ткани. Чем больше плотность материала, тем медленнее должны распространяться в нем (при одинаковой упругости) ультразвуковые волны. Но к этому физическому параметру следует подходить с осторожностью. Скорость звука при прохождении его через разные среды биологического организма может быть различной, в таблице представлены скорости распространения ультразвука в различных средах.

Материал Скорость звука (м*с -1 )
Мягкие ткани (в среднем) 1540
Головной мозг 1541
Жир 1450
Печень 1549
Почка 1561
Мышцы 1585
Кости черепа 4080

Для различных типов ультразвуковых исследований применяются разные виды ультразвуковых волн. Наиболее важными параметрами являются частота излучения, диаметр поверхности трандюсера и фокусировка ультразвукового пучка. В системах медицинской ультразвуковой диагностики обычно используются частоты 1; 1,6; 2,25; 3,5; 5 и 10 МГц.

В аппаратах имеется возможность регилировать излучаемый и принимаемые сигналы, так же имеется возможность усиления изображения эхосигналов.

Лучевая безопасность ультразвукового исследования

Ультразвук широко используется в медицине, хотя в отличие от технической сферы где применяется низкочастотный ультразвук, для которого имеются нормы излучения, в медицине все обстоит гораздо сложнее. С одной стороны, отсутствует возможность провести прямую дозиметрию излучения в рабочем пучке, особенно на глубине; с другой же, — очень трудно учесть рассеяние, поглощение и ослабление ультразвука биологическими тканями. Кроме того, при работе с аппаратами реального масштаба времени практически невозможно учесть и экспозицию, так как длительность озвучивания, а так же его направление и глубина варьируют в широких пределах.

Распространение ультразвука в биологических средах сопровождается механическим, термическим, и физико-химическими эффектами. В результате поглощения ультразвука тканями акустическая энергия превращается в тепловую. Другим видом механического действия является кавитация, которая приводит к разрывам в месте прохождения ультразвуковой волны.

Все эти явления происходят при воздействии на биологические ткани ультразвука высокой интенсивности, и в известных условиях они желательны, например, в физиотерапевтической практике. При диагностике эти эффекты не возникают в результате использования ультразвука небольшой интенсивности – не более 50 мВт*см 2 . Конструктивно приборы для ультразвуковой медицинской диагностики надежно защищают пациента от возможного вредного воздействия звуковой энергии. Однако в последнее время все чаще появляются работы о неблагоприятном воздействии ультразвукового исследования на пациента. В частности это относится к ультразвуковому исследованию в акушерстве. Уже доказано что ультразвук неблагоприятно воздействует на хромосомы, в частности может приводить к мутациям плода. В некоторых странах, например Япония ультразвуковое исследование беременным проводится только после серьезного обоснования необходимости данного исследования. Несомненно воздействие ультразвука на самого врача, который длительное время находится под воздействием ультразвука. Имеются сообщения что со временем поражаются кисть руки которой врач держит датчик.

Методика УЗИ в акушерстве.

Методика УЗИ в области малого таза довольно проста и легко выполнима. До начала исследования женщины врач должен подробно ознакомится с анамнезом и результатами акушерско-гинекологических данных. Специальной подготовки для УЗИ не требуется, но обязательно необходимо хорошее наполнение мочевого пузыря. В связи с этим пациентке рекомендуется воздержаться от мочеиспускания за 3 — 4 ч. до исследования или же за 1,5 — 2 ч. выпить 3 — 4 стакана воды. При необходимости назначают диуретики или наполняют мочевой пузырь через катетер. Наполненный мочевой пузырь облегчает исследование матки, так как приподнимает ее и выводит в центральное положение, оттесняет петли кишечника, а так же является хорошей акустической средой для исследования органов малого таза.

УЗИ проводят в горизонтальном положении больной на спине. На кожу передней поверхности живота наносят любое контрастное вещество. Сканирование полипозиционное, но производится обязательно в двух плоскостях (продольной и поперечной) в зависимости от положения датчика. Начинают исследование с продольного сканирования (положение датчика в сагиттальной плоскости) вертикально над лоном. Затем датчик перемещают в различных плоскостях до горизонтального положения над лонным сочленением (поперечное сканирование).

На продольных сканограммах отчетливо выявляются овальной формы эхонегативная тень мочевого пузыря с гладкими контурами. Непосредственно за ним к низу отображается эхопозитивная структура матки грушевидной формы и влагалища, ограниченного двумя продольными линиями, отходящими под углом от матки. Яичники в этой плоскости выявить трудно. На поперечных сканограммах матка имеет форму овала, по бокам от которого выявляются эхопозитивные структуры округлых яичников.

УЗИ при беременности

УЗИ в акушерстве оказалось наиболее достоверной и информативной методикой среди других клинических методов в оценке некоторых аспектов течения нормальной беременности и особенно при ее патологии.

Ультразвуковое исследование беременных проводится по строгим клиническим показаниям. При УЗИ беременных необходимо оценить: наличие в матке или вне ее плодного яйца; определить их размеры и количество; срок беременности; наличие признаков угрожающего выкидыша (его стадия); наличие неразвивающейся беременности; пузырного заноса; положение, вид и прилежание плода; состояние пуповины; наличие признаков внутриутробной смерти плода; уродства (аномалии) плода; состояние плаценты (нормальная, предлежание, отслоение); пол плода; сочетание беременности с опухолями матки.

Читайте также:  Почему гудит вентилятор в ноутбуке

^ При беременности путем повторных УЗИ в разные сроки можно проследить физиологическое развитие плода. При эхографии можно высказаться о наличии беременности, начиная с 2,5 – 3 недель.

В ранние сроки беременности на эхограммах четко отображается матка (рис 1), содержащая овальной формы плодное яйцо с достаточно утолщенной стенкой, внутренний диаметр которого 0,5 см, а наружный до 1,5 – 1,6 см (3-4 недели), включая яркую полосу ворсинчатого хориона. К 6 неделям плодное яйцо занимает ½ плоско-

(рис. 1) Плод в 4 недели, вагинальное исследование. сти матки, в нем видны контуры

анатомических структур плода. Сердечная деятельность плода, критерий правильного развития беременности, выявляется с 5 –6 недели, а двигательная активность с 6 –7 недели.

П ри дальнейшем развитии нормальной беременности изображение плода становится более четким, к 10 – 11 неделям можно визуализировать анатомические структуры: череп, туловище (рис. 2). II и III триместр имеют особое значение, так как в этот период происходит формирование и рост плода, плаценты, накопление околоплодных вод. Для оценки нормального развития беременно-

(рис. 2) Плод в 11 недель. сти и срока начиная с 6 недели можно производить измерения размеров плодного яйца, а в дальнейшем плода и его анатомических органов. Наиболее ценную информацию о правильном развитии плода и сроках беременности дают измерения расстояния от кресца до головки (КТР – кресцово — теменной размер), а также в более поздних сроках беременности измерения бипариетального размера головки (БПР), среднего размера бедренной кости, среднего размера грудной клетки на уровне сердца плода, размеры брюшной полости на уровне пупочной вены. Имеются специально разработанные таблицы о зависимости размеров плода и его анатомических элементов от срока беременности.

^ Внематочная беременность. При эхографии – матка увеличена, эндометрий утолщен, а плодное яйцо определяется вне полости матки. Уточнить данное состояние можно при повторном исследовании через 4 –5 дней, а также по наличию сердцебиения и движения плода вне матки. В дифференциальной диагностике надо иметь в виду возможность аномалий развития матки.

^ Пузырный занос – серьезное осложнение беременности. На эхограммах отмечается увеличенная в размерах матка с наличием или без плодного яйца. В полости матки просматривается характерная для пузырного заноса эхоструктура мелкокистозного характера, напоминающая “губку”. При динамическом исследовании отмечается ее быстрый рост.

^ Многоплодная беременность при УЗИ может быть диагносцирована в различных сроках беременности. На эхограммах в полости матки определяется несколько плодных яиц, а в более поздних сроках изображение нескольких плодов. Многоплодная беременность нередко сочетается с различными уродствами плодов.

^ Уродства плода – нередкая патология беременности. Разработаны классификации различных пороков развития органов и систем плода. УЗИ позволяет достаточно уверенно диагносцировать такие аномалии развития, как гидроцефалия, анэнцефалия, при которой отсутствует эхографическое отображение нормальной формы головки. Среди других пороков развития плода можно обнаружить нарушение положения сердца, грыжи брюшной полости, асцит, нарушения остеогенеза, поликистоз и гидронефроз почек и д.р.

Важную роль имеет УЗИ плаценты. При эхографии можно оценить зрелость, величину, расположение плаценты, следить за ее развитием в процессе беременности. Эхографическое изображение плаценты представляется как утолщенный участок матки повышенной акустической плотности с довольно четкой эхопозитивной границей на уровне амниотической жидкости. Иногда плаценту трудно отличить от миометрия, особенно если она лежит на задней стенки матки. Определение точной локализации плаценты, особенно по отношению к ее внутреннему зеву матки, позволяет выявить такое грозное осложнение, как предлежание плаценты. При этом плацента находится в области дна матки. Эхографически также можно выявить преждевременное отслоение плаценты и другие ее патологические состояния. Важно также указать, что по клиническим показаниям УЗИ может быть применено в период родов и в послеродовом периоде в целях контроля за сократительной деятельностью матки, а также при обследовании новорожденных.

В настоящее время ультразвуковой метод нашел широкое диагностическое применение и стал неотъемлемой частью клинического обследования больных. По абсолютному числу ультразвуковые исследования в плотную приблизились к рентгенологическим.

Одновременно существенно расширились и границы использования эхографии. Во-первых, она стала применятся для исследования тех объектов, которые ранее считались недоступными для ультразвуковой оценки (легкие, желудок, кишечник, скелет), так что в настоящее время практически все органы и анатомические структуры могут быть изучены сонографически. Во-вторых, в практику вошли интракорпоральные исследования, осуществляемые введением специальных микродатчиков в различные полости организма через естественные отверстия, пункционным путем в сосуды и сердце либо через операционные раны. Этим было достигнуто значительное повышение точности ультразвуковой диагностики. В-третьих, появились новые направления использования ультрозвукового метода. Наряду с обычными плановыми исследованиями, он широко применяется для целей неотложной диагностики, мониторинга, скрининга, для контроля за выполнением диагностических и лечебных пункций.

Список используемой литературы

  1. Ультразвуковая диагностика в гинекологии. Демидов В.Н., Зыбкин Б.И. Изд. Медицина, 1990.
  1. Клиническая ультразвуковая диагностика. Мухарлямов Н.М., Беленков

Ю.Н., Атьков О.Ю. Изд. Медицина, 1987.

  1. Ультразвуковая диагностика в акушерской клинике. Стрижаков А.Т.,

Бунин А.Т., Медведьев М.В. Изд. Медицина, 1990.

  1. Obstetric Ultrasound – Dr. Joseph S. K. Woo (Hong Kong.) –

Сварные соединения и швы требуют постоянного контроля качества, вне зависимости от давности установки. Проверка производится с помощью различных методов, наиболее точным является ультразвуковой контроль. Методика проверки сварных швов используется с начала прошлого столетия, пользуется популярностью ввиду точных показателей, выявления малейших недочетов. Как показывает практика, внутри сварочного шва могут быть скрытые дефекты, которые напрямую влияют на качество соединения, ультразвуковая дефектоскопия помогает выявить мельчайшие детали, недостатки.

Ультразвуковой метод и его технология

Технология ультразвукового контроля используется производством, промышленностью с момента развития радиотехнического процесса. Эффект и устройство технологии в том, что ультразвуковые волны акустического типа не меняют прямолинейную траекторию движения при прохождении однородной среды. Ультразвуковой метод используется также при проверке металлов и соединений, имеющих различную структуру. Такие случаи подразумевают, что происходит частичный процесс отражения волн, зависит от химических свойств металлов, чем больше сопротивление звуковых волн, тем сильнее воздействует эффект отражения.

Дефектоскопия или ультразвуковой контроль не разрушают соединения по структуре. Технология проведения ультразвуковой диагностики включает поиск структур, не отвечающих по химическим или физическим свойствам показателям, любые отклонения считаются дефектом. Показания колебаний рассчитываются по формуле L=c/f, где L описывает длину волны, Скорость перемещения ультразвуковых колебаний, f частоту колебаний. Определение дефекта происходит по амплитуде отраженной волны, тем самым возможно вычислить размер недочета.

Процесс ультразвукового метода

Сварные соединения подразумевают работу с наличием газовых ванн, испарения которых не всегда успевают удалиться в окружающую среду. Ультразвуковой метод контроля позволяет выявить газообразные вещества в сварных соединениях, за счет сопротивления волн. Газообразная среда веществ обладает сопротивлением в пять раз меньшим по отношению к кристаллической решетке металлических материалов. Ультразвуковой контроль металла позволяет вывить среды за счет отражения колебаний.

Получение и свойства ультразвуковых колебаний

Акустические волны или ультразвуковые колебания выдаются при частоте, превышающей параметр 20 кГц. Механические колебания, способные рассеиваться при упругих, твердых средах, диапазон, как правило, составляет 0,5 – 10 МГц. Распространение волн структурой металла происходит акустическими ультразвуковыми волнами, воздействующими на равновесие центральной точки.

Методика ультразвукового метода

Существуют несколько способов ультразвукового неразрушающего контроля, наиболее распространенный из них пьезоэлектрический. Заряженная электричеством с определенной частотой пластинка вибрирует, механические колебания передаются в окружающую среду при состоянии волны. Генераторы электро волны используется вне зависимости от предназначения, размеров оборудования, могут выдавать различные параметры.

Скорость обращения ультразвукового контроля напрямую зависит от свойств, типа физической среды. Скорость распространения продольной волны вдвое выше, чем поперечной. Прием информации происходит пластиной из пьезоэлектрического элемента, работающей на преобразование энергии в импульсную энергию. Процессом применяются короткие переменные импульсы различного типа колебаний, что позволяет определить глубину, свойства дефекта.

Углы направления ультразвуковых колебаний

На границе разделения двух сред, результатом падения продольной акустической волны при наклонном типе является появление отражения и трансформации ультразвуковых волн. Существуют основные типы контроля:

  • отраженные;
  • преломлённые;
  • сдвиговые поперечные;
  • продольные волны.
Читайте также:  Обвязка котла своими руками пошаговая инструкция

Процесс происходит путем разделения падающей под углом волны на поперечную и продольную, распространение которых производится непосредственно материалом.

Углы направления ультразвуковых колебаний

Существует определенное значение угла подачи, направления ультразвуковых колебаний, при нарушении которого, ультразвуковой контроль не будет распространяться вглубь металла, а останется на его поверхности. Данный метод используется при определенных параметрах и задачах, волна двигается только по поверхности материала, что позволяет контролировать качество сварного шва.

Виды ультразвукового контроля

Операция контроля сварного шва позволяет определить расстояние до дефекта по временной шкале распространения отражения, размер амплитуды, ширины акустической волны.

В настоящем времени существует несколько способов, которыми проводится ультразвуковой контроль, основанием служит ГОСТ-23829, основные отличия происходят в оценке, регистрации данных:

  1. Диагностика теневым методом производится с использованием двух инструментов, установленных по разные стороны материала. Предназначение первого – излучать волны, второго принимать. Устанавливаются по перпендикулярной плоскости исследуемого сварного соединения. Процесс происходит путем излучения, контроля приема отражений, при тех случаях, когда возникает глухая зона, это означает, что результатом соединении имеется участок другой среды, шов принимается дефектным участком.
  2. Эхо — импульсный метод применяет один дефектоскоп, параметрами которого обусловлено направление, прем ультразвукового контроля. Технология отражения происходит путем отсвечивания отражения от участков с дефектами. Когда допускается прохождение волн напрямую, участок считается нормальным, если происходит отражение, возврат волны к дефектоскопу, это место помечается как дефект.
  3. В эхо — зеркальном методе используется такой же принцип работы, что и способом, приведенным выше. Отличительной особенностью является применение отражателя. Устанавливается оборудование под прямым углом, волны посылаются к материалу, в случае наличия повреждений отражаются на приемник. Данный тип проверки зачастую используют при поиске трещин, других вертикальных дефектов.
  4. Симбиоз зеркального и теневого метода контроля использует два прибора. Оба устанавливаются с одной стороны объекта, посылаются косые волны. Отражение происходит от сетки основного металла, в случае выявления нестандартных зон, место маркируется как дефект.
  5. В основе дельта метода ультразвукового контроля происходит излучение дефектом направленных отражений внутрь сварного шва. Волны разделяются на подкатегории зеркальных, трансформируемых, продольных и поперечных, приемником удается поймать не все типа волн. Метод не славится популярностью, т.к. требует настройки оборудования, продолжительной расшифровки результатов. Также при контроле дельта методом предъявляются жесткие требования по качеству очистки сварного соединения.

Наиболее популярными являются теневой и эхо – импульсный методы, остальные реже ввиду требуемой настройки оборудования и неудобного использования инструментов.

Как проводится ультразвуковая дефектоскопия

Процесс проверки ультразвуковым оборудованием относится практически ко всем типам металлов, чугуне, меди, стали и других легированных соединениях.

Проведение дефектоскопии ультразвуковым методом

Существует определенный стандарт выполнения проверочных работ, которому необходимо придерживаться:

  • зачищается ржавчина, лакокрасочное покрытие со шва на расстоянии 5-7 см;
  • для получения достоверных результатов при ультразвуковом контроле сварных соединений, поверхности необходимо обработать турбинным, трансформаторным, либо машинным маслом;
  • контролер или прибор подстраивается под определенные параметры проверки;
  • стандартные настройки применяются при толщине сварного шва не более 2 см;
  • более толстые детали требуют применения АРД диаграмм;
  • проверка качества шва выполняется с помощью AVG или DSG параметров;
  • излучатель аппарата ультразвукового контроля перемещается вдоль шва зигзагом, проворачивается вокруг своей оси на небольшой угол;
  • искатель проводится по материалу до выявления максимально четкого, устойчивого сигнала, после чего разворачивается для поиска максимальной амплитуды;
  • контроль, проверку ультразвуковой дефектоскопии сварных швов производят согласно ГОСТу;
  • отклонения, дефекты прописываются в регистрационную таблицу.

Сварочные швы основываются на контроле, достаточным проверкой УЗД. При соответствующей квалификации оператора, правильно настроенном оборудовании, возможно получить исчерпывающий ответ о наличии дефектов. При тех случаях, когда применяются более подробные исследования сварных швов, используют гамма — дефектоскопию или рентгенодефектоскопию. Рамки применения теневого метода ультразвуковой дефектоскопии и других способов существуют, основные дефекты, которые возможно выявить с помощью УЗД:

  • расслоения наплавленного метала, различные поры;
  • трещины, неровности шва, а также не проваренные участки;
  • не сплавления, дефекты свище образного происхождения;
  • поврежденные окислами и коррозией участки, провисание металла;
  • несоответствующий химический состав соединения, поврежденный геометрически размер.

Ультразвуковой диагностике подвержены различные типы швов, плоские, продольные, кольцевые, сварные трубы и стыки, а также тавровые соединения. Методика проверки швов применяется не только крупными производственными предприятиями, а также на строительных площадках, при возведении помещений. Чаще всего УЗД используется:

  • в определении степени износа труб в магистралях, сварных соединений;
  • диагностика агрегатов, материалов в аналитических целях;
  • машиностроение, нефтегазовая, тепловая, химическая и атомная промышленности требуют использование технологии при обеспечении безопасности эксплуатации будущего изделия;
  • в соединениях сварного типа с крупнозернистой структурой, сложной геометрией;
  • установка и соединение изделий, подверженных крупным физическим, температурным нагрузкам, потребует проверки ультразвуковым контролем.

К работе с дефектоскопом допускаются лица, имеющие удостоверение, ознакомленные с правилами техники безопасности. Сварные стыки могут находиться в замкнутых пространствах, на высоте, труднодоступных местах, перед работой оператор проходит дополнительный инструктаж, работа контролируется отделом охраны труда. Работа производится с заземленным аппаратом, сечением провода не менее 2.5 мм. Категорически запрещается использовать оборудование вблизи сварочных работ в отсутствие специальной защиты.

Параметры оценки результатов

Аппарат настраивается путем определения наименьшего размера дефекта на эталонной детали. В роли эталонов выступают расположенные перпендикулярно направлению прозвучивания отверстия плоскодонного типа. Используются эталонные детали также с боковыми прорезями, зарубками.

Результаты ультразвукового контроля

Минимальным расстоянием между дефектами обуславливается разрешающая способность для эхо – метода, это делается, чтобы определить несколько различных дефектов.

Оценка качества сварных соединений при ультразвуковом контроле происходит по следующим параметрам:

  • условная протяженность;
  • ширина, высота дефекта, а также его форма;
  • амплитуда звуковой волны.

Длинна сварного дефекта определяется расстоянием перемещения излучателя по отношению к зафиксированному показанию сигналов с прибора. Способ определяется также для определения ширины дефекта. По разнице времени излученной, отраженной форме волны от дефекта определяется высота дефекта.

Факторы, влияющие на результат

Определение точного значения дефекта при ультразвуковой проверке практически невозможно. Именно поэтому, за основу берется площадь эталонного изделия. Максимально допустимыми параметрами являются эквивалентные величины, которые сопоставляются с эталоном. Стоит учитывать, что вычисленная площадь, практически во всех случаях, меньше настоящего размера.

Результаты дефектоскопии ультразвукового типа оформляются в специально отведенном журнале, согласно ГОСТ-14782. При регистрации проверки в обязательном порядке проставляются:

  • индексы и наименование типа сварного стыка, длина подверженного контролю шва;
  • техническое задание, условие, при которых производилась проверка;
  • тип, наименование устройства;
  • частота колебаний в ГЦ;
  • условная, предельная чувствительность, углы ввода в металл, а также тип искателя;
  • результаты, дата проверки, а также фамилия оператора.

К описанию характеристик в журналах при проверке применяются сокращения. Прописная буква А указывает на то, что дефект и его протяженность не переступает технические условия. Буквы Б, В характеризуют протяженность дефекта по нарастающей. Цифрами следом обозначается количество дефектов, их размеры, глубину.

Дефекты сварных швов

Определение формы дефекта происходит за счёт специальной методики, основой данных является эхо-сигнал, отображаемый дефектоскопом. Точность показаний определяется квалификацией оператора, его внимательностью, тщательность проведения. Измеряемые показатели должны быть в соответствии с инструкцией.

Достоинства и недостатки ультразвукового контроля труб

Ультразвуковым контролем возможно определить несоответствия во всех видах соединений, пайке, склейке, сварки и т.к. Процедура позволяет выявить большое количество недочетов:

  • поры, воздушные пустоты;
  • околошовные трещины, шлаковые отложения;
  • неоднородные химические вкрапления;
  • расслоения слоями наплавленного металла.

Основными преимуществами проведения неразрушимой акустической дефектоскопии являются:

  • возможность проверки соединений как разнородных, так и однородных металлов, материалов;
  • оценка качества соединения материалов, состоящих из неметаллов;
  • отсутствие разрушения, повреждения поверхности шва, после проверки обследуемый участок необходимо только закрасить;
  • отсутствие опасных воздействий на организм человека в сравнении с радио или рентген дефектоскопией.
  • Низкая себестоимость, высокая мобильность позволяют проводить контроль швов практически при любых полевых условиях.
Читайте также:  Плохо клеятся обои что делать

Плюсы и минусы ультразвукового контроля

Проведения работ со сложным оборудованием требует обученного, опытного персонала. Ультразвуковой контроль швов не исключение, а также требуется подготовка сварного шва по определенным показателям:

  • Контроль за создание шероховатости не ниже 5 класса, направление полос должно быть перпендикулярно направлению шва;
  • Исключение появления воздушного зазора путем нанесения масел или воды, в случае проверти вертикальной поверхности применяется густые массы и клейстеры.

Каждый из способов проверки имеет недостатки, проверка КЗД металлов не исключение. К основным отрицательным сторонам можно отнести:

  • При диагностике круглых изделий радиусом менее 10 см, необходимо применять специальные преобразователи пьезоэлектрического типа, радиус кривизны подошвы которых отличается от объекта на 10 процентов в большую или меньшую сторону;
  • Крупнозернистые структуры толщиной более 60 мм сложно диагностировать, в связи с затуханием отражения, рассеиванием колебаний при контроле. Такие материалы обычно состоят из аустенита или чугуна.
  • Малые изделия, детали со сложными конструктивными особенностями не возможно подвергнуть проверке УЗД;
  • Сложный процесс оценки, проверки материалов из неоднородных сталей;
  • Расположение в структуре шва дефекта на различной глубине, не дает возможности точно определить диаметр, высоту неровности.

Преимущества и проблемные вопросы метода

Для проверки понадобится дефектоскопы и преобразователи, набор эталонов, образцов, предназначенных для калибровки и настройки оборудования. Определение расположения, места дефектов производится с помощью линейки координатного типа, вспомогательные приспособления понадобятся для зачистки, смазки проверяемого шва.

Проверенный сварной шов гарантирует надежность, прочность конструкции при эксплуатации. Существуют определенные нормативы, по которым изделие вводится в эксплуатацию или дорабатывается дальше.

В особенности проверка применяется в тяжелых условиях использования приспособлений.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Техническая диагностика — область знаний, охватывающая теорию, методы и средства определения технического состояния объекта. Назначение технической диагностики в обшей системе технического обслуживания — снижение объема затрат на стадии эксплуатации за счет проведения целевого ремонта.

Техническое диагностирование — процесс определения технического состояния объекта. Оно подразделяется на тестовое, функциональное и экспресс-диагностирование.

Периодическое и плановое техническое диагностирование позволяет:

выполнять входной контроль агрегатов и запасных узлов при их покупке;

свести к минимуму внезапные внеплановые остановки технического оборудования;

управлять старением оборудования.

Комплексное диагностирование технического состояния оборудования дает возможность решать следующие задачи:

проводить ремонт по фактическому состоянию;

увеличить среднее время между ремонтами;

уменьшить расход деталей в процессе эксплуатации различного оборудования;

уменьшить объем запасных частей;

сократить продолжительность ремонтов;

повысить качество ремонта и устранить вторичные поломки;

продлить ресурс работающего оборудования на строгой научной основе;

повысить безопасность эксплуатации энергетического оборудования:

уменьшить потребление ТЭР.

Тестовое техническое диагностирование — это диагностирование, при котором на объект подаются тестовые воздействия (например, определение степени износа изоляции электрических машин по изменению тангенса угла диэлектрических потерь при подаче напряжения па обмотку двигателя от моста переменного тока).

Функциональное техническое диагностирование — это диагностирование, при котором измеряются и анализируются параметры объекта при его функционировании но прямому назначению или в специальном режиме, например определение технического состояния подшипников качения по изменению вибрации во время работы электрических машин.

Экспресс-диагностирование — это диагностирование по ограниченному количеству параметров за заранее установленное время.

Объект технического диагностирования — изделие или его составные части, подлежащие (подвергаемые) диагностированию (контролю).

Техническое состояние — это состояние, которое характеризуется в определенный момент времени при определенных условиях внешней среды значениями диагностических параметров, установленных технической документацией на объект.

Средства технического диагностирования — аппаратура и программы, с помощью которых осуществляется диагностирование (контроль).

Встроенные средства технического диагностирования — это средства диагностирования, являющиеся составной частью объекта (например, газовые реле в трансформаторах на напряжение 100 кВ).

Внешние устройства технического диагностирования — это устройства диагностирования, выполненные конструктивно отдельно от объекта (например, система виброконтроля на нефтеперекачивающих насосах).

Система технического диагностирования — совокупность средств, объекта и исполнителей, необходимая для проведения диагностирования по правилам, установленным технической документацией.

Технический диагноз — результат диагностирования.

Прогнозирование технического состояния это определение технического состояния объекта с заданной вероятностью на предстоящий интервал времени, в течение которого сохранится работоспособное (неработоспособное) состояние объекта.

Алгоритм технического диагностирования — совокупность предписаний, определяющих последовательность действий при проведении диагностирования.

Диагностическая модель — формальное описание объекта, необходимое для решения задач диагностирования. Диагностическая модель может быть представлена в виде совокупности графиков, таблиц или эталонов в диагностическом пространстве.

Существуют различные методы технического диагностирования:

Визуально-оптический метод реализуется с помощью лупы, эндоскопа, штангенциркуля и других простейших приспособлений. Этим методом пользуются, как правило, постоянно, проводя внешние осмотры оборудования при подготовки его к работе или в процессе технических осмотров.

Виброакустический метод реализуется с помощью различных приборов для измерения вибрации. Вибрация оценивается по виброперемещению, виброскорости или виброускорению. Оценка технического состояния этим методом осуществляется по общему уровню вибрации в диапазоне частот 10 — 1000 Гц или по частотному анализу в диапазоне 0 — 20000 Гц.

Взаимосвязь параметров вибрации

Тепловизиониый (термографический) метод реализуется с помощью пирометров и тепловизоров. Пирометрами измеряется температура бесконтактным способом в каждой конкретной точке, т.е. для получения информации о температурном ноле необходимо этим прибором сканировать объект. Тепловизоры позволяют определять температурное поле в определенной части поверхности диагностируемого объекта, что повышает эффективность выявления зарождающихся дефектов.

Метод акустической эмиссии основан на регистрации высокочастотных сигналов в металлах и керамике при возникновении микротрещин. Частота акустического сигнала изменяется в диапазоне 5 — 600 кГц. Сигнал возникает в момент образования микротрещин. По окончании развития трещины он исчезает. Вследствие этого при использовании данного метода применяют различные способы нагружения объектов в процессе диагностирования.

Магнитный метод используется для выявления дефектов: микротрещин, коррозии и обрывов стальных проволок в канатах, концентрации напряжения в металлоконструкциях. Концентрация напряжения выявляется с помощью специальных приборов, в основе работы которых лежат принципы Баркгаузсна и Виллари.

Метод частичных разрядов применяется для выявления дефектов в изоляции высоковольтного оборудования (трансформаторы, электрические машины). Физические основы частичных разрядов состоят в том, что в изоляции электрооборудования образуются локальные заряды различной полярности. При разнополярных зарядах возникает искра (разряд). Частота этих разрядов изменяется в диапазоне 5 — 600 кГц, они имеют различную мощность и длительность.

Существуют различные методы регистрации частичных разрядов:

метод потенциалов (зонд частичных разрядов Lemke-5);

акустический (применяются высокочастотные датчики);

электромагнитный (зонд частичных разрядов);

Для выявления дефектов в изоляции станционных синхронных генераторов с водородным охлаждением и дефектов в трансформаторах на напряжение 3 — 330 кВ применяется хромотографический анализ газов . При возникновении различных дефектов в трансформаторах в масле выделяются различные газы: метан, ацетилен, водород и т.д. Доля этих растворенных в масле газов чрезвычайно мала, но тем не менее имеются приборы (хромотографы), с помощью которых указанные газы выявляются в трансформаторном масле и определяется степень развития тех или других дефектов.

Для измерения тангенса угла диэлектрических потерь в изоляции в высоковольтном электрооборудовании (трансформаторы, кабели, электрические машины) применяется специальный прибор — мост переменного тока. Этот параметр измеряется при подаче напряжения от номинального до 1,25 номинального. При хорошем техническом состоянии изоляции тангенс угла диэлектрических потерь не должен изменяться в этом диапазоне напряжения.

Графики изменения тангенса угла диэлектрических потерь: 1 — неудовлетворительное; 2 — удовлетворительное; 3 — хорошее техническое состояние изоляции

Кроме того, для технического диагностирования валов электрических машин, корпусов трансформаторов могут использоваться следующие методы: ультразвуковой, ультразвуковая толщинометрия, радиографический, капиллярный (цветной), вихретоковый, механические испытания (твердометрия, растяжение, изгиб), рентгенографическая дефектоскопия, металлографический анализ.

Ссылка на основную публикацию
Adblock detector